Feature-based Land Use/Land Cover Classification of Google Earth Imagery

被引:0
|
作者
Sowmya, D. R. [1 ]
Shenoy, P. Deepa [1 ]
Venugopal, K. R. [2 ]
机构
[1] Bangalore Univ, Univ Visvesvaraya Coll Engn, Dept Comp Sci & Engn, Bengaluru, India
[2] Bangalore Univ, Bengaluru, India
关键词
Land Use/Land Cover; Texture Feature; Morphological Feature; Linear Spectral Mixture Model; Multiple Thresholding;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we presented a novel method to classify land use/land cover objects of earth surface using google earth imagery. The Gray Level Co-occurrence Matrix (GLCM) is used to extract second order statistical features. Opening, closing, and reconstruction operators are used to extract morphological features of objects. The extracted texture features and morphological features are fused to improve the classification accuracy. The spectral reflectance of the endmember classes is calculated using Linear Spectral Mixture Model (LSMM). Multiple thresholds are generated for each class. The generated spectral properties and thresholding are used to classify features set. The classification accuracy of the resulted thematic map of the specified geographical area is compared with the generic KNN method.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Land Use/Land Cover Classification of Google Earth Imagery
    Sowmya, D. R.
    Hegde, Vishwas S.
    Suhas, J.
    Hegdekatte, Raghavendra V.
    Shenoy, P. Deepa
    Venugopal, K. R.
    [J]. 2017 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2017), 2017, : 10 - 13
  • [2] Land Use and Land Cover Classification For Bangladesh 2005 on Google Earth Engine
    Yu, Zhiqi
    Di, Liping
    Tang, Junmei
    Zhang, Chen
    Lin, Li
    Yu, Eugene Genong
    Rahman, Md. Shahinoor
    Gaigalas, Juozas
    Sun, Ziheng
    [J]. 2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 481 - 485
  • [3] Statistical features for land use and land cover classification in Google Earth Engine
    Becker, Willyan Ronaldo
    Lo, Thiago Berticelli
    Johann, Jerry Adriani
    Mercante, Erivelto
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 21
  • [4] Assessment of object-based classification for mapping land use and land cover using google earth
    Selvaraj, Rohini
    Amali, D. Geraldine Bessie
    [J]. GLOBAL NEST JOURNAL, 2023, 25 (07): : 131 - 138
  • [5] Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping
    Hu, Qiong
    Wu, Wenbin
    Xia, Tian
    Yu, Qiangyi
    Yang, Peng
    Li, Zhengguo
    Song, Qian
    [J]. REMOTE SENSING, 2013, 5 (11) : 6026 - 6042
  • [6] Land use and land cover classification using machine learning algorithms in google earth engine
    Arpitha, M.
    Ahmed, S. A.
    Harishnaika, N.
    [J]. EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3057 - 3073
  • [7] Land use and land cover classification using machine learning algorithms in google earth engine
    Arpitha M
    S A Ahmed
    Harishnaika N
    [J]. Earth Science Informatics, 2023, 16 : 3057 - 3073
  • [8] Land Cover/Use Classification Based on Feature Selection
    Zhang, Yuwei
    Liu, Jinting
    Wan, Luhe
    Qi, Shaoqun
    [J]. JOURNAL OF COASTAL RESEARCH, 2015, : 380 - 385
  • [9] Correction to: Land use and land cover classification using machine learning algorithms in google earth engine
    Arpitha M
    S A Ahmed
    N Harishnaika
    [J]. Earth Science Informatics, 2023, 16 : 3075 - 3075
  • [10] Application of Google earth engine python']python API and NAIP imagery for land use and land cover classification: A case study in Florida, USA
    Prasai, Ritika
    Schwertner, T. Wayne
    Mainali, Kumar
    Mathewson, Heather
    Kafley, Hemanta
    Thapa, Swosthi
    Adhikari, Dinesh
    Medley, Paul
    Drake, Jason
    [J]. ECOLOGICAL INFORMATICS, 2021, 66