Land use and land cover classification using machine learning algorithms in google earth engine

被引:16
|
作者
Arpitha, M. [1 ]
Ahmed, S. A. [1 ]
Harishnaika, N. [1 ]
机构
[1] Kuvempu Univ, Dept Appl Geol, Shivamogga 577451, Karnataka, India
关键词
Google earth engine; Land use and land cover; Normalized difference vegetation index; Random Forest; Classification regression trees and support vector machine; INTEGRATION; DISTRICT; PROVINCE; DROUGHT; PRODUCT; AREA;
D O I
10.1007/s12145-023-01073-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Natural resources are under tremendous amounts of threat as a result of the expanding human population, which over time intensifies changes in Land use and Land cover (LULC). Understanding how various machine learning classifiers function is crucial as the demand for an accurate estimate of LULC from satellite images. The purpose of this research was to classify the LULC in the entire Karnataka state, using three distinct methods on the Google Earth Engine (GEE) namely RF (Random Forest), SVM (Support Vector Machine) and CART (Classification Regression Trees), are examples of machine learning techniques. The LULC is classified by the training sets using supervised classification. The NDVI (Normalized difference vegetation index) was assessed and used to increase classification accuracy. The LULC classification for the years 2015 to 2021 utilizes multi-temporal images like Sentinel-2, Landsat-8, and MODIS data with spatial resolution of 10 m, 30 m, and 250 m. Agricultural land, Built-up land, Forest land, Fallow land, wasteland, water body and others, are major LULC classes, it lies on a level I classification. According to the findings, the change % of agricultural land is high from 2015 (64.03%) to 2021 (67.81%), this roughly increased about 3.78% during the study year. While water bodies increased by 5.25 to 6.3%. Based on the results, the largest LULC group is agricultural land (122,789.4 km(2) or 64.03%), followed by forest land (37,678.56 km(2) or 19.65%). Increased built-up land in the studied area indicates extraordinarily rapid urban growth in major cities of the state. This research offers a reliable approach for comprehensive, automated, and LULC classification in Karnataka State.
引用
收藏
页码:3057 / 3073
页数:17
相关论文
共 50 条
  • [1] Land use and land cover classification using machine learning algorithms in google earth engine
    Arpitha M
    S A Ahmed
    Harishnaika N
    [J]. Earth Science Informatics, 2023, 16 : 3057 - 3073
  • [2] Correction to: Land use and land cover classification using machine learning algorithms in google earth engine
    Arpitha M
    S A Ahmed
    N Harishnaika
    [J]. Earth Science Informatics, 2023, 16 : 3075 - 3075
  • [3] Assessing Machine Learning Algorithms for Land Use and Land Cover Classification in Morocco Using Google Earth Engine
    Ouchra, Hafsa
    Belangour, Abdessamad
    Erraissi, Allae
    Banane, Mouad
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT I, 2024, 14365 : 395 - 405
  • [4] Comparison of Three Machine Learning Algorithms Using Google Earth Engine for Land Use Land Cover Classification
    Zhao, Zhewen
    Islam, Fakhrul
    Waseem, Liaqat Ali
    Tariq, Aqil
    Nawaz, Muhammad
    Ul Islam, Ijaz
    Bibi, Tehmina
    Rehman, Nazir Ur
    Ahmad, Waqar
    Aslam, Rana Waqar
    Raza, Danish
    Hatamleh, Wesam Atef
    [J]. RANGELAND ECOLOGY & MANAGEMENT, 2024, 92 : 129 - 137
  • [5] Detailed and automated classification of land use/land cover using machine learning algorithms in Google Earth Engine
    Pan, Xia
    Wang, Zhenyi
    Gao, Yong
    Dang, Xiaohong
    Han, Yanlong
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (18) : 5415 - 5432
  • [6] Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India
    Loukika, Kotapati Narayana
    Keesara, Venkata Reddy
    Sridhar, Venkataramana
    [J]. SUSTAINABILITY, 2021, 13 (24)
  • [7] Automatic land cover classification with SAR imagery and Machine learning using Google Earth Engine
    Desai, Geeta T.
    Gaikwad, Abhay N.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (10) : 909 - 916
  • [8] Land Use and Land Cover Classification For Bangladesh 2005 on Google Earth Engine
    Yu, Zhiqi
    Di, Liping
    Tang, Junmei
    Zhang, Chen
    Lin, Li
    Yu, Eugene Genong
    Rahman, Md. Shahinoor
    Gaigalas, Juozas
    Sun, Ziheng
    [J]. 2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 481 - 485
  • [9] Statistical features for land use and land cover classification in Google Earth Engine
    Becker, Willyan Ronaldo
    Lo, Thiago Berticelli
    Johann, Jerry Adriani
    Mercante, Erivelto
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 21
  • [10] Mapping and monitoring land use land cover dynamics employing Google Earth Engine and machine learning algorithms on Chattogram, Bangladesh
    Biswas, Jayanta
    Abu Jobaer, Md
    Haque, Salman F.
    Shozib, Md Samiul Islam
    Limon, Zamil Ahamed
    [J]. HELIYON, 2023, 9 (11)