SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER

被引:8
|
作者
Prudente, V. H. R. [1 ,2 ]
Sanches, I. D. [1 ]
Adami, M. [3 ]
Skakun, S. [2 ,4 ]
Oldoni, L., V [1 ]
Xaud, H. A. M. [5 ]
Xaud, M. R. [5 ]
Zhang, Y. [2 ]
机构
[1] Natl Inst Space Res, Remote Sensing Div, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[3] Natl Inst Space Res, Amazon Reg Ctr, BR-66077830 Belem, Para, Brazil
[4] NASA, Goddard Space Flight Ctr, Code 619, Greenbelt, MD 20771 USA
[5] Brazilian Agr Res Corp, Embrapa Roraima, BR-69301970 Boa Vista, Parana, Brazil
关键词
Roraima; machine learning; radar; Sentinel-1; SENTINEL-1;
D O I
10.1109/IGARSS39084.2020.9323404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study aims at mapping Land Use and Land Cover (LULC) in the region of Roraima, Brazil, using time-series of Sentinel-1 Synthetic Aperture Radar (SAR) data. All available Sentinel-1 images covering the study area were used and classified using two machine learning algorithms, namely random forest and multilayer perceptron. LULC heterogeneity with the SAR process complexity makes the process challenging in distinguishing certain classes. Results show that SAR data could be used for LULC mapping, as rainforest, savannas, water, and sandbank/outcrop classes. But cannot provide accurate separation for all classes, mainly for those with similar geometrical structures, such as regeneration areas, perennial crops, and buritizais.
引用
下载
收藏
页码:4100 / 4103
页数:4
相关论文
共 50 条
  • [1] HYPERSPECTRAL DATA FOR LAND USE/LAND COVER CLASSIFICATION
    Vijayan, Divya V.
    Shankar, G. Ravi
    Shankar, T. Ravi
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 991 - 995
  • [2] Impacts of Feature Normalization on Optical and SAR Data Fusion for Land Use/Land Cover Classification
    Zhang, Hongsheng
    Lin, Hui
    Li, Yu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 1061 - 1065
  • [3] TROPICAL LAND COVER CHANGE DETECTION WITH POLARIMETRIC SAR DATA
    Servello, Emerson Luiz
    Kuplich, Tatiana Mora
    Shimabukuro, Yosio Edemir
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1477 - 1480
  • [4] THE USE OF LAND COVER CHANGE LIKELIHOOD FOR IMPROVING LAND COVER CLASSIFICATION
    Reis, Mariane S.
    Sant'Anna, Sidnei J. S.
    Dutra, Luciano V.
    Escada, Maria Isabel S.
    Pantaleao, Eliana
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3222 - 3225
  • [5] A Meta-Methodology for Improving Land Cover and Land Use Classification with SAR Imagery
    Soares, Marinalva Dias
    Dutra, Luciano Vieira
    Ostwald Pedro da Costa, Gilson Alexandre
    Feitosa, Raul Queiroz
    Negri, Rogerio Galante
    Diaz, Pedro M. A.
    REMOTE SENSING, 2020, 12 (06)
  • [6] INTER-REGION TRANSFER LEARNING FOR LAND USE LAND COVER CLASSIFICATION
    Siddamsetty, J.
    Stricker, M.
    Charfuelan, M.
    Nuske, M.
    Dengel, A.
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 881 - 888
  • [7] A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data
    Qi, Zhixin
    Yeh, Anthony Gar-On
    Li, Xia
    Lin, Zheng
    REMOTE SENSING OF ENVIRONMENT, 2012, 118 : 21 - 39
  • [8] Interpretable Approaches for Land Use and Land Cover Classification
    Osias, Ana C. F.
    Schaefer, Mariana A. R.
    Veloso, Gustavo V.
    de Oliveira, Hugo N.
    Reis, Julio C. S.
    PROCEEDINGS OF THE 20TH BRAZILIAN SYMPOSIUM ON INFORMATIONS SYSTEMS, SBSI 2024, 2024,
  • [9] Land use - Land cover classification for the island of Cephalonia
    Vassilopoulos, A
    Gournelos, T
    Evelpidou, N
    PROTECTION AND RESTORATION OF THE ENVIRONMENT VI, VOLS I - III, PROCEEDINGS, 2002, : 1761 - 1768
  • [10] A Hybrid Approach for Land Use/Land Cover Classification
    Tang, Yanbing
    Pannell, Clifton W.
    GISCIENCE & REMOTE SENSING, 2009, 46 (04) : 365 - 387