EVALUATION OF CONVOLUTIONAL NEURAL NETWORK VARIANTS FOR DIAGNOSIS OF DIABETIC RETINOPATHY

被引:3
|
作者
Bustamam, Alhadi [1 ]
Sarwinda, Devvi [1 ]
Paradisa, Radifa H. [1 ]
Victor, Andi Arus [2 ]
Yudantha, Anggun Rama [2 ]
Siswantining, Titin [1 ]
机构
[1] Univ Indonesia, Fac Math & Nat Sci, Dept Math, Depok, Indonesia
[2] Univ Indonesia, Cipto Mangunkusumo Natl Gen Hosp, Fac Med, Dept Ophthalmol, Jakarta, Indonesia
关键词
diabetic retinopathy; fundus image; deep learning; resnet; densenet;
D O I
10.28919/cmbn/5660
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic Retinopathy (DR) is a long-term complication of Diabetes Mellitus (DM) that impairs vision. This stage occurs in visual impairment and blindness if treated late. DR identified through scanning fundus images. A technique on classifying DR in fundus images is the deep learning approach, one of the methods of implementing machine learning. In this study, the Convolutional Neural Networks (CNN) method applied with the ResNet-50 and DenseNet-121 architectures. The data adopted in this analysis was generated from DIARETDB1, an online database containing fundus images. Then, the pre-processing stage is carried out on the fundus image to improve model performance, such as selected the green channel from the images and inverted it, converted the images into grayscale images, and applied Contrast Limited Adaptive Histogram Equalization (CLAHE) for uniform contrast in the images. The outcome of this research indicates that the ResNet-50 model is better than DenseNet-121 in detecting DR. The most reliable results from the ResNet-50 model's case testing are accuracy, precision, and recall of 95%, 98%, and 96% respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A fully convolutional neural network for recognition of diabetic retinopathy in fundus images
    Jena M.
    Mishra S.P.
    Mishra D.
    Mishra, Smita P. (smitamishra@soa.ac.in), 1600, Bentham Science Publishers (14): : 395 - 408
  • [22] Diabetic retinopathy detection using convolutional neural network with residual blocks
    Kommaraju, Rajasekhar
    Anbarasi, M.S.
    Biomedical Signal Processing and Control, 2024, 87
  • [23] Automated detection of diabetic retinopathy using optimized convolutional neural network
    Minija, S. Jasmine
    Rejula, M. Anline
    Ross, B. Shamina
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 21065 - 21080
  • [24] Detection of Diabetic Retinopathy Images using A Fully Convolutional Neural Network
    Jena, Manaswini
    Mishra, Smita Prava
    Mishra, Debahuti
    2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND BUSINESS ANALYTICS (ICDSBA 2018), 2018, : 523 - 527
  • [25] Automated detection of diabetic retinopathy using custom convolutional neural network
    Albahli, Saleh
    Yar, Ghulam Nabi Ahmad Hassan
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (02) : 275 - 291
  • [26] Diagnogsis of Diabetic Retinopathy Using Image Processing and Convolutional Neural Network
    Deperlioglu, Omer
    Kose, Utku
    2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [27] Classification of diabetic retinopathy using ensemble convolutional neural network architectures
    Hendrawan, Kevin Anggakusuma
    Handayani, Ariesanti Tri
    Andayani, Ari
    Ernawati, Titiek
    Gumelar, Agustinus Bimo
    UNIVERSA MEDICINA, 2024, 43 (02) : 188 - 194
  • [28] Early Detection of Diabetic Retinopathy Using Deep Convolutional Neural Network
    Kannan, Rajeswari
    Vispute, S. R.
    Kharat, Reena
    Salunkhe, Dipti
    Vivekanandan, N.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (03): : 1283 - 1292
  • [29] Automated detection of diabetic retinopathy using optimized convolutional neural network
    S. Jasmine Minija
    M. Anline Rejula
    B. Shamina Ross
    Multimedia Tools and Applications, 2024, 83 : 21065 - 21080
  • [30] Diabetic retinopathy detection using convolutional neural network with residual blocks
    Kommaraju, Rajasekhar
    Anbarasi, M. S.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87