Detection of Diabetic Retinopathy Images using A Fully Convolutional Neural Network

被引:5
|
作者
Jena, Manaswini [1 ]
Mishra, Smita Prava [1 ]
Mishra, Debahuti [1 ]
机构
[1] Sikhsa O Anusandhana Univ, ITER, Dept Comp Sci & Engn, Bhubaneswar, Odisha, India
关键词
Diabetic Retinopathy; Fundus Images; Convolution Neural Network;
D O I
10.1109/ICDSBA.2018.00103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of this paper is to develop a model for the classification of diabetic retinopathy, a prime cause for blindness that appears due to prolonged diabetes. A deep learning model based on fully convolutional neural network is developed to classify the disease from fundus image of the patient. Here, proposed neural network consists of only six convolutional layers along rectified linear unit (ReLu) activation and max pooling layer. The model trains faster as compared to traditional convolutional neural network models as the absence of fully connected layer reduces the computational complexity. The validation of the proposed model is carried out by training it with a publicly available High-Resolution Fundus (HRF) image database. The model is also compared with various existing state-of-the-art methods which shows competitive result as compared to these models. The intelligence of our model lies in its ability to re-tune weight to overcome outliers encountered in future. The proposed model works well with an accuracy of 91.66%.
引用
收藏
页码:523 / 527
页数:5
相关论文
共 50 条
  • [1] A fully convolutional neural network for recognition of diabetic retinopathy in fundus images
    Jena, Manaswini
    Mishra, Smita P.
    Mishra, Debahuti
    [J]. Recent Advances in Computer Science and Communications, 2021, 14 (02) : 395 - 408
  • [2] Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images
    Garcia, Gabriel
    Gallardo, Jhair
    Mauricio, Antoni
    Lopez, Jorge
    Del Carpio, Christian
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 635 - 642
  • [3] Detection of Diabetic Retinopathy Using Bichannel Convolutional Neural Network
    Pao, Shu-, I
    Lin, Hong-Zin
    Chien, Ke-Hung
    Tai, Ming-Cheng
    Chen, Jiann-Torng
    Lin, Gen-Min
    [J]. JOURNAL OF OPHTHALMOLOGY, 2020, 2020
  • [4] Automated detection of diabetic retinopathy using optimized convolutional neural network
    Minija, S. Jasmine
    Rejula, M. Anline
    Ross, B. Shamina
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 21065 - 21080
  • [5] Automated detection of diabetic retinopathy using custom convolutional neural network
    Albahli, Saleh
    Yar, Ghulam Nabi Ahmad Hassan
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (02) : 275 - 291
  • [6] Automated detection of diabetic retinopathy using optimized convolutional neural network
    S. Jasmine Minija
    M. Anline Rejula
    B. Shamina Ross
    [J]. Multimedia Tools and Applications, 2024, 83 : 21065 - 21080
  • [7] Early Detection of Diabetic Retinopathy Using Deep Convolutional Neural Network
    Kannan, Rajeswari
    Vispute, S. R.
    Kharat, Reena
    Salunkhe, Dipti
    Vivekanandan, N.
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (03): : 1283 - 1292
  • [8] Diabetic retinopathy detection using convolutional neural network with residual blocks
    Kommaraju, Rajasekhar
    Anbarasi, M. S.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [9] DiabNet: A Convolutional Neural Network for Diabetic Retinopathy Detection
    Anitha, S.
    Priyanka, S.
    [J]. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2024, 23 (03)
  • [10] Efficient diabetic retinopathy detection using convolutional neural network and data augmentation
    Naik, Srinivas
    Kamidi, Deepthi
    Govathoti, Sudeepthi
    Cheruku, Ramalingaswamy
    Reddy, A. Mallikarjuna
    [J]. SOFT COMPUTING, 2023,