Consideration of spatial heterogeneity in landslide susceptibility mapping using geographical random forest model

被引:20
|
作者
Quevedo, Renata Pacheco [1 ]
Maciel, Daniel Andrade [1 ,9 ]
Uehara, Tatiana Dias Tardelli [1 ]
Vojtek, Matej [2 ]
Renno, Camilo Daleles [1 ]
Pradhan, Biswajeet [3 ,4 ,5 ,6 ]
Vojtekova, Jana [2 ]
Quoc Bao Pham [7 ,8 ]
机构
[1] Natl Inst Space Res INPE, Earth Observat & Geoinformat Div, Sao Paulo, Brazil
[2] Constantine Philosopher Univ Nitra, Fac Nat Sci, Dept Geog & Reg Dev, Nitra, Slovakia
[3] Univ Technol Sydney, Fac Engn & IT, Ctr Adv Modelling & Geospatial Informat Syst, Ultimo, NSW, Australia
[4] Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul, South Korea
[5] King Abdulaziz Univ, Ctr Excellence Climate Change Res, Jeddah, Saudi Arabia
[6] Univ Kebangsaan Malaysia, Earth Observat Ctr, Inst Climate Change, Bangi, Malaysia
[7] Thu Dau Mot Univ, Inst Appl Technol, Thu Dau Mot City, Vietnam
[8] Univ Silesia Katowice, Fac Nat Sci, Inst Earth Sci, Sosnowiec, Poland
[9] Natl Inst Space Res INPE, Earth Observat Coordinat, Instrumentat Lab Aquat Syst LabISA, Sao Jose Dos Campos, SP, Brazil
关键词
Landslide susceptibility; GIS; random forest; spatial autocorrelation; XGBoost; SUPPORT VECTOR MACHINE; FUZZY MULTICRITERIA; RIVER-BASIN; GIS; PREDICTION; SENSITIVITY; UNCERTAINTY; CLASSIFIER; REGRESSION; PATTERNS;
D O I
10.1080/10106049.2021.1996637
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Most previous studies of landslide susceptibility mapping (LSM) have not contemplated spatial heterogeneity and the commonly used models for LSM are aspatial, which could reduce model performance. Therefore, aiming to evaluate the applicability of spatial algorithms to predict landslide susceptibility, the performance of geographical random forest (GRF) was evaluated, in comparison to random forest (RF) and extreme gradient boosting (XGBoost). Based on the results, GRF presented the better performance (AUC = 0.876), followed by RF (AUC = 0.748) and XGBoost (AUC = 0.745). GRF also provided the most suitable susceptibility map. While RF and XGBoost presented almost 50% of the study area as susceptible, the GRF presented more concentrated susceptibility areas spatially, with a reasonable area for moderate (15.55%), high (8.73%) and very-high (2.59%) susceptibility classes. Finally, it can be inferred that spatial assessment may improve model performance, and that spatial models have a great potential for LSM.
引用
收藏
页码:8190 / 8213
页数:24
相关论文
共 50 条
  • [1] Mapping landslide susceptibility with the consideration of spatial heterogeneity and factor optimization
    Chen, Chuanfa
    Liu, Yating
    Li, Yanyan
    Guo, Fangjia
    NATURAL HAZARDS, 2024, : 4067 - 4093
  • [2] Mapping landslide susceptibility and types using Random Forest
    Taalab, Khaled
    Cheng, Tao
    Zhang, Yang
    BIG EARTH DATA, 2018, 2 (02) : 159 - 178
  • [3] SPATIALLY AWARE LANDSLIDE SUSCEPTIBILITY PREDICTION USING A GEOGRAPHICAL RANDOM FOREST APPROACH
    Teke, A.
    Kavzoglu, T.
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 363 - 370
  • [4] A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm
    Sun, Deliang
    Wen, Haijia
    Wang, Danzhou
    Xu, Jiahui
    GEOMORPHOLOGY, 2020, 362
  • [5] Assessment of Landslide Susceptibility in Garhwal Himalayas Using Random Forest Model
    Singh, Ranjeet
    Kumara, Parmanand
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS XIII, 2022, 12268
  • [6] A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China
    Wang, Yumiao
    Feng, Luwei
    Li, Sijia
    Ren, Fu
    Du, Qingyun
    CATENA, 2020, 188
  • [7] Application of Bayesian Hyperparameter Optimized Random Forest and XGBoost Model for Landslide Susceptibility Mapping
    Wang, Shibao
    Zhuang, Jianqi
    Zheng, Jia
    Fan, Hongyu
    Kong, Jiaxu
    Zhan, Jiewei
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [8] Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization
    Zhou, Xinzhi
    Wen, Haijia
    Zhang, Yalan
    Xu, Jiahui
    Zhang, Wengang
    GEOSCIENCE FRONTIERS, 2021, 12 (05)
  • [9] Landslide Susceptibility Mapping of Chamoli (Uttarakhand) Using Random Forest Machine Learning Method
    Mittal, Amogh
    Gupta, Kunal
    Satyam, Neelima
    NATURAL GEO-DISASTERS AND RESILIENCY, CREST 2023, 2024, 445 : 207 - 217
  • [10] Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector
    Wang, Yue
    Wen, Haijia
    Sun, Deliang
    Li, Yuechen
    REMOTE SENSING, 2021, 13 (13)