Above-ground biomass estimation from LiDAR data using random forest algorithms

被引:50
|
作者
Torre-Tojal, Leyre [1 ]
Bastarrika, Aitor [1 ]
Boyano, Ana [2 ]
Manuel Lopez-Guede, Jose [3 ,5 ]
Grana, Manuel [4 ,5 ]
机构
[1] Univ Basque Country, Fac Engn, UPV EHU, Dept Min & Met Engn & Mat Sci, Nieves Cano 12, Vitoria 01006, Spain
[2] Univ Basque Country, Fac Engn Vitoria Gasteiz, Mech Engn Dept, UPV EHU, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Basque Country, UPV EHU, Dept Syst Engn & Automat Control, Fac Engn, Nieves Cano 12, Vitoria 01006, Spain
[4] Univ Basque Country, Fac Comp Sci, UPV EHU, Dept Comp Sci & Artificial Intelligence, Paseo Manuel De Lardizabal 1, Donostia San Sebastian 20018, Spain
[5] Univ Basque Country, Computat Intelligence Grp, UPV EHU, Vitoria, Spain
关键词
LiDAR; Biomass; Regression; Random forest; RADIATA D. DON; AIRBORNE LIDAR; DISCRETE-RETURN; GROUND BIOMASS; TREE; HEIGHT; VOLUME; COVER; EQUATIONS; QUICKBIRD;
D O I
10.1016/j.jocs.2021.101517
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R-2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06-1.08 Mton, which is between 16-18 % higher than the biomass predicted by the Basque Government.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Estimation of Above-ground Forest Biomass in Amazonia with Neural Networks and Remote Sensing
    Almeida, A. C.
    Barros, P. L. C.
    Monteiro, J. H. A.
    Rocha, B. R. P.
    IEEE LATIN AMERICA TRANSACTIONS, 2009, 7 (01) : 27 - 32
  • [42] Forest Above-Ground Biomass Estimation From Vertical Reflectivity Profiles at L-Band
    Caicoya, Astor Torano
    Pardini, Matteo
    Hajnsek, Irena
    Papathanassiou, Konstantinos
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2379 - 2383
  • [43] Forest above-ground biomass estimation based on strongly collinear variables derived from airborne laser scanning data
    Zhang, Xiaofang
    Li, Xiaoyao
    Sharma, Ram P.
    Ye, Qiaolin
    Zhang, Huiru
    Feng, Linyan
    Xie, Dongbo
    Huang, Hongchao
    Fu, Liyong
    Zhou, Zefeng
    ECOLOGICAL INDICATORS, 2024, 166
  • [44] Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR
    Giannico, Vincenzo
    Lafortezza, Raffaele
    John, Ranjeet
    Sanesi, Giovanni
    Pesola, Lucia
    Chen, Jiquan
    REMOTE SENSING, 2016, 8 (04)
  • [45] Lidar remote sensing of above-ground biomass in three biomes
    Lefsky, MA
    Cohen, WB
    Harding, DJ
    Parker, GG
    Acker, SA
    Gower, ST
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2002, 11 (05): : 393 - 399
  • [46] DYNAMIC ANALYSIS AND MODELING OF FOREST ABOVE-GROUND BIOMASS
    Tian, Xin
    Li, Zengyuan
    Guo, Yun
    Yan, Min
    Chen, Erxue
    Su, Zhongbo
    van der Tol, Christiaan
    Ling, Feilong
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 729 - 732
  • [47] Estimation of forest above-ground biomass in Guangxi, China, by integrating forest age and stack learning
    Ju, Ting
    Liu, Bo
    Yue, Yuemin
    Du, Hu
    Li, Qian
    Wang, Xu
    Wang, Kelin
    LAND DEGRADATION & DEVELOPMENT, 2023, 34 (13) : 4079 - 4093
  • [48] Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass
    Shao, Zhenfeng
    Zhang, Linjing
    Wang, Lei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) : 5569 - 5582
  • [49] Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data
    Kronseder, Karin
    Ballhorn, Uwe
    Boehm, Viktor
    Siegert, Florian
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 18 : 37 - 48
  • [50] Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area
    Tian, Xin
    Su, Zhongbo
    Chen, Erxue
    Li, Zengyuan
    van der Tol, Christiaan
    Guo, Jianping
    He, Qisheng
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 14 (01): : 160 - 168