Above-ground biomass estimation from LiDAR data using random forest algorithms

被引:50
|
作者
Torre-Tojal, Leyre [1 ]
Bastarrika, Aitor [1 ]
Boyano, Ana [2 ]
Manuel Lopez-Guede, Jose [3 ,5 ]
Grana, Manuel [4 ,5 ]
机构
[1] Univ Basque Country, Fac Engn, UPV EHU, Dept Min & Met Engn & Mat Sci, Nieves Cano 12, Vitoria 01006, Spain
[2] Univ Basque Country, Fac Engn Vitoria Gasteiz, Mech Engn Dept, UPV EHU, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Basque Country, UPV EHU, Dept Syst Engn & Automat Control, Fac Engn, Nieves Cano 12, Vitoria 01006, Spain
[4] Univ Basque Country, Fac Comp Sci, UPV EHU, Dept Comp Sci & Artificial Intelligence, Paseo Manuel De Lardizabal 1, Donostia San Sebastian 20018, Spain
[5] Univ Basque Country, Computat Intelligence Grp, UPV EHU, Vitoria, Spain
关键词
LiDAR; Biomass; Regression; Random forest; RADIATA D. DON; AIRBORNE LIDAR; DISCRETE-RETURN; GROUND BIOMASS; TREE; HEIGHT; VOLUME; COVER; EQUATIONS; QUICKBIRD;
D O I
10.1016/j.jocs.2021.101517
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R-2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06-1.08 Mton, which is between 16-18 % higher than the biomass predicted by the Basque Government.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Forest above-ground woody biomass estimation using multi-temporal space-borne LiDAR data in a managed forest at Haldwani, India
    Musthafa, Mohamed
    Singh, Gulab
    ADVANCES IN SPACE RESEARCH, 2022, 69 (09) : 3245 - 3257
  • [22] Improving mangrove above-ground biomass estimates using LiDAR
    Salum, Rafaela B.
    Souza-Filho, Pedro Walfir M.
    Simard, Marc
    Silva, Carlos Alberto
    Fernandes, Marcus E. B.
    Cougo, Michele F.
    do Nascimento Junior, Wilson
    Rogers, Kerrylee
    ESTUARINE COASTAL AND SHELF SCIENCE, 2020, 236
  • [23] Estimating Above-Ground Biomass of Potato Using Random Forest and Optimized Hyperspectral Indices
    Yang, Haibo
    Li, Fei
    Wang, Wei
    Yu, Kang
    REMOTE SENSING, 2021, 13 (12)
  • [24] Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images
    St-Onge, B.
    Hu, Y.
    Vega, C.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (05) : 1277 - 1294
  • [25] Evaluation of allometries for estimating above-ground biomass using airborne LiDAR data in tropical montane forest of Northern Borneo
    Loh, Ho Yan
    James, Daniel
    Liew, Jim Jun Fei
    Ioki, Keiko
    Phua, Mui-How
    10TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING, 2020, 540
  • [26] Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data
    Gonzalez-Jaramillo, Victor
    Fries, Andreas
    Zeilinger, Joerg
    Homeier, Juergen
    Paladines-Benitez, Jhoana
    Bendix, Joerg
    REMOTE SENSING, 2018, 10 (05)
  • [27] Upscaling coniferous forest above-ground biomass based on airborne LiDAR and satellite ALOS PALSAR data
    Li, Wang
    Niu, Zheng
    Li, Zengyuan
    Wang, Cheng
    Wu, Mingquan
    Muhammad, Shakir
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [28] Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat
    Puliti, S.
    Breidenbach, J.
    Schumacher, J.
    Hauglin, M.
    Klingenberg, T. F.
    Astrup, R.
    REMOTE SENSING OF ENVIRONMENT, 2021, 265
  • [29] Assessment of Forest Above-Ground Biomass Estimation from PolInSAR in the Presence of Temporal Decorrelation
    Ghasemi, Nafiseh
    Tolpekin, Valentyn
    Stein, Alfred
    REMOTE SENSING, 2018, 10 (06)
  • [30] Exploring the Inclusion of Small Regenerating Trees to Improve Above-Ground Forest Biomass Estimation Using Geospatial Data
    Le, Anh, V
    Paull, David J.
    Griffin, Amy L.
    REMOTE SENSING, 2018, 10 (09)