Above-ground biomass estimation from LiDAR data using random forest algorithms

被引:1
|
作者
Torre-Tojal, Leyre [1 ]
Bastarrika, Aitor [1 ]
Boyano, Ana [2 ]
Manuel Lopez-Guede, Jose [3 ,5 ]
Grana, Manuel [4 ,5 ]
机构
[1] Univ Basque Country, Fac Engn, UPV EHU, Dept Min & Met Engn & Mat Sci, Nieves Cano 12, Vitoria 01006, Spain
[2] Univ Basque Country, Fac Engn Vitoria Gasteiz, Mech Engn Dept, UPV EHU, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Basque Country, UPV EHU, Dept Syst Engn & Automat Control, Fac Engn, Nieves Cano 12, Vitoria 01006, Spain
[4] Univ Basque Country, Fac Comp Sci, UPV EHU, Dept Comp Sci & Artificial Intelligence, Paseo Manuel De Lardizabal 1, Donostia San Sebastian 20018, Spain
[5] Univ Basque Country, Computat Intelligence Grp, UPV EHU, Vitoria, Spain
关键词
LiDAR; Biomass; Regression; Random forest; RADIATA D. DON; AIRBORNE LIDAR; DISCRETE-RETURN; GROUND BIOMASS; TREE; HEIGHT; VOLUME; COVER; EQUATIONS; QUICKBIRD;
D O I
10.1016/j.jocs.2021.101517
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R-2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06-1.08 Mton, which is between 16-18 % higher than the biomass predicted by the Basque Government.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest
    He, Qisheng
    Chen, Erxue
    An, Ru
    Li, Yong
    [J]. FORESTS, 2013, 4 (04) : 984 - 1002
  • [2] Estimation of Above-Ground Forest Biomass in Nepal by the Use of Airborne LiDAR, and Forest Inventory Data
    Bahadur, K. C. Yam
    Liu, Qijing
    Saud, Pradip
    Gaire, Damodar
    Adhikari, Hari
    [J]. LAND, 2024, 13 (02)
  • [3] Estimation of above-ground forest biomass using metrics based on Gaussian decomposition of waveform lidar data
    Zhuang, Wei
    Mountrakis, Giorgos
    Wiley, John J., Jr.
    Beier, Colin M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (07) : 1871 - 1889
  • [4] Deep point cloud regression for above-ground forest biomass estimation from airborne LiDAR
    Oehmcke, Stefan
    Li, Lei
    Trepekli, Katerina
    Revenga, Jaime C.
    Nord-Larsen, Thomas
    Gieseke, Fabian
    Igel, Christian
    [J]. REMOTE SENSING OF ENVIRONMENT, 2024, 302
  • [5] COMPONENT FOREST ABOVE GROUND BIOMASS ESTIMATION USING LIDAR AND SAR DATA
    Zeng, Peng
    Shi, Jianmin
    Huang, Jimao
    Zhang, Yongxin
    Zhang, Wangfei
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6395 - 6398
  • [6] Research on Rapeseed Above-Ground Biomass Estimation Based on Spectral and LiDAR Data
    Jiang, Yihan
    Wu, Fang
    Zhu, Shaolong
    Zhang, Weijun
    Wu, Fei
    Yang, Tianle
    Yang, Guanshuo
    Zhao, Yuanyuan
    Sun, Chengming
    Liu, Tao
    [J]. AGRONOMY-BASEL, 2024, 14 (08):
  • [7] Above-ground biomass estimation of a secondary forest in Sarawak
    Chai, F.Y.C.
    [J]. Journal of Tropical Forest Science, 1997, 9 (03): : 359 - 368
  • [8] Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest
    Nie, Sheng
    Wang, Cheng
    Zeng, Hongcheng
    Xi, Xiaohuan
    Li, Guicai
    [J]. ECOLOGICAL INDICATORS, 2017, 78 : 221 - 228
  • [9] Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei
    Kim, Eunji
    Lee, Woo-Kyun
    Yoon, Mihae
    Lee, Jong-Yeol
    Son, Yowhan
    Abu Salim, Kamariah
    [J]. FORESTS, 2016, 7 (11):
  • [10] Estimating above-ground biomass of subtropical forest using airborne LiDAR in Hong Kong
    Chan, Evian Pui Yan
    Fung, Tung
    Wong, Frankie Kwan Kit
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)