VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks

被引:109
|
作者
Berger, Daniel R. [1 ]
Seung, H. Sebastian [2 ]
Lichtman, Jeff W. [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Princeton Univ, Dept Comp Sci, Princeton Neurosci Inst, Princeton, NJ 08544 USA
基金
美国国家卫生研究院;
关键词
connectomics; segmentation; visualization; serial section electron microscopy; CLEM; proofreading; TrakEM2; voxel; SCANNING-ELECTRON-MICROSCOPY; DIRECTION-SELECTIVITY; WIRING SPECIFICITY; HIGH-RESOLUTION; CIRCUIT; NETWORK; RECONSTRUCTION; ANATOMY; SYSTEM;
D O I
10.3389/fncir.2018.00088
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent developments in serial-section electron microscopy allow the efficient generation of very large image data sets but analyzing such data poses challenges for software tools. Here we introduce Volume Annotation and Segmentation Tool (VAST), a freely available utility program for generating and editing annotations and segmentations of large volumetric image (voxel) data sets. It provides a simple yet powerful user interface for real-time exploration and analysis of large data sets even in the Petabyte range.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Seg2Link: an efficient and versatile solution for semi-automatic cell segmentation in 3D image stacks
    Wen, Chentao
    Matsumoto, Mami
    Sawada, Masato
    Sawamoto, Kazunobu
    Kimura, Koutarou D.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Seg2Link: an efficient and versatile solution for semi-automatic cell segmentation in 3D image stacks
    Chentao Wen
    Mami Matsumoto
    Masato Sawada
    Kazunobu Sawamoto
    Koutarou D. Kimura
    Scientific Reports, 13
  • [3] An interactive tool for manual, semi-automatic and automatic video annotation
    Bianco, Simone
    Ciocca, Gianluigi
    Napoletano, Paolo
    Schettini, Raimondo
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 131 : 88 - 99
  • [4] Semi-automatic image annotation system based on segmentation and SVM
    Gong, Youlin
    Xiang, Hui
    Journal of Computational Information Systems, 2008, 4 (04): : 1651 - 1658
  • [5] ByLabel: A Boundary Based Semi-Automatic Image Annotation Tool
    Qin, Xuebin
    He, Shida
    Zhang, Zichen
    Dehghan, Masood
    Jagersand, Martin
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 1804 - 1813
  • [6] Semi-automatic image annotation using 3D LiDAR projections and depth camera data
    Li, Pei Yao
    Parrilla, Nicholas A.
    Salathe, Marco
    Joshi, Tenzing H.
    Cooper, Reynold J.
    Park, Ki
    Sudderth, Asa, V
    ANNALS OF NUCLEAR ENERGY, 2025, 213
  • [7] Neighborhood graphs for semi-automatic annotation of large image databases
    Hacid, Hakim
    ADVANCES IN MULTIMEDIA MODELING, PT 1, 2007, 4351 : 586 - 595
  • [8] Efficient semi-automatic 3D segmentation for neuron tracing in electron microscopy images
    Jones, Cory
    Liu, Ting
    Cohan, Nathaniel Wood
    Ellisman, Mark
    Tasdizen, Tolga
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 246 : 13 - 21
  • [9] Semi-automatic 3D Object Keypoint Annotation and Detection for the Masses
    Blomqvist, Kenneth
    Chung, Jen Jen
    Ott, Lionel
    Siegwart, Roland
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3908 - 3914
  • [10] 3D semi-automatic segmentation of the cochlea and inner ear
    Diao Xianfen
    Chen Siping
    Liang Changhong
    Wang Yuanmei
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6285 - 6288