Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation

被引:60
|
作者
Abbaszadeh, Mostafa [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
关键词
Finite difference method; Riesz space distributed-order diffusion equation; Unconditional stability; Convergence; TIME-FRACTIONAL DIFFUSION; ACCURATE NUMERICAL-METHOD; WAVE-EQUATIONS;
D O I
10.1016/j.aml.2018.08.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current paper, an error estimate has been proposed to find a secondorder finite difference scheme for solving the Riesz space distributed-order diffusion equation. The convergence order of the proposed method is O(tau(2)+ h(2)). The numerical results show the efficiency of the new technique. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
  • [21] High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation
    Li, Jing
    Yang, Yingying
    Jiang, Yingjun
    Feng, Libo
    Guo, Boling
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 801 - 826
  • [22] Second-Order Finite Difference/Spectral Element Formulation for Solving the Fractional Advection-Diffusion Equation
    Mostafa Abbaszadeh
    Hanieh Amjadian
    Communications on Applied Mathematics and Computation, 2020, 2 : 653 - 669
  • [23] Second-Order Finite Difference/Spectral Element Formulation for Solving the Fractional Advection-Diffusion Equation
    Abbaszadeh, Mostafa
    Amjadian, Hanieh
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020, 2 (04) : 653 - 669
  • [24] Implicit Runge–Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation
    Jingjun Zhao
    Yanming Zhang
    Yang Xu
    Computational and Applied Mathematics, 2020, 39
  • [25] Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay
    Javidi M.
    Heris M.S.
    SeMA Journal, 2019, 76 (4) : 533 - 551
  • [26] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Zhang, Chun-Hua
    Yu, Jian-Wei
    Wang, Xiang
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1813 - 1836
  • [27] Local discontinuous Galerkin method for the Riesz space distributed-order Sobolev equation
    Fouladi, Somayeh
    Mohammadi-Firouzjaei, Hadi
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 155 : 38 - 47
  • [28] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Chun-Hua Zhang
    Jian-Wei Yu
    Xiang Wang
    Numerical Algorithms, 2023, 92 : 1813 - 1836
  • [29] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096
  • [30] A fast difference scheme on a graded mesh for time-fractional and space distributed-order diffusion equation with nonsmooth data
    Fardi, Mojtaba
    Khan, Yasir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (15):