Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model

被引:133
|
作者
Ding, Feng [1 ,2 ,3 ]
Xu, Ling [3 ]
Meng, Dandan [3 ]
Jin, Xue-Bo [4 ]
Alsaedi, Ahmed [5 ]
Hayat, Tasawar [5 ]
机构
[1] Hubei Univ Technol, Sch Elect & Elect Engn, Wuhan 430068, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
[3] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[4] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Parameter estimation; Gradient search; Iterative algorithm; Measurement information; Bilinear system; State space system; OPTIMAL DIVIDEND PROBLEM; RECURSIVE LEAST-SQUARES; MULTI-INNOVATION; MONOLAYER; DESIGN;
D O I
10.1016/j.cam.2019.112575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the bilinear system with white noise, the difficulty of identification is that there exists the product term of the state and input in the system. To overcome this difficulty, we derive the input-output representation of a class of special bilinear systems by using the transformation, and present a stochastic gradient (SG) algorithm and a gradient-based iterative algorithm for estimating the parameters of the systems in the case of the known input-output data by means of the auxiliary model. The proposed gradient-based iterative algorithm can generate more accurate parameter estimates than the auxiliary model based SG algorithm. The performance of the proposed algorithms are tested by two numerical examples. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290
  • [32] Modified stochastic gradient estimation algorithms for Box-Jenkins model based on auxiliary model
    Feng, Jianxia
    [J]. Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016, 71 : 1257 - 1262
  • [33] PARAMETER-IDENTIFICATION OF BILINEAR-SYSTEMS USING THE GALERKIN METHOD
    HWANG, CY
    CHEN, MY
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1985, 16 (05) : 641 - 648
  • [34] Identification and parameter estimation of a bilinear oscillator using Volterra series with harmonic probing
    Chatterjee, Animesh
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2010, 45 (01) : 12 - 20
  • [35] Parameter estimation of Markov switching bilinear model using the (EM) algorithm
    Maaziz, M.
    Kharfouchi, S.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 192 : 35 - 44
  • [36] Robust Parameter Estimation Method for Bilinear Model
    Ismail, Mohd Isfahani
    Ali, Halina
    Yahaya, Sharipah Soaad S.
    [J]. INNOVATION AND ANALYTICS CONFERENCE AND EXHIBITION (IACE 2015), 2015, 1691
  • [37] Recursive Least Squares and Multi-innovation Gradient Estimation Algorithms for Bilinear Stochastic Systems
    Dandan Meng
    [J]. Circuits, Systems, and Signal Processing, 2017, 36 : 1052 - 1065
  • [38] Recursive Least Squares and Multi-innovation Gradient Estimation Algorithms for Bilinear Stochastic Systems
    Meng, Dandan
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (03) : 1052 - 1065
  • [39] State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle
    Zhang, Xiao
    Ding, Feng
    Xu, Ling
    Yang, Erfu
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12): : 1704 - 1713
  • [40] The filtering based parameter identification for bilinear-in-parameter systems
    Wang, Xuehai
    Ding, Feng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (01): : 514 - 538