BIFURCATIONS OF MULTIPLE RELAXATION OSCILLATIONS IN POLYNOMIAL LIENARD EQUATIONS

被引:12
|
作者
De Maesschalck, P. [1 ]
Dumortier, F. [1 ]
机构
[1] Hasselt Univ, B-3590 Diepenbeek, Belgium
关键词
Slow-fast system; singular perturbations; limit cycles; relaxation oscillation; polynomial Lienard equations; elementary catastrophy; CANARD CYCLES;
D O I
10.1090/S0002-9939-2010-10610-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the presence of limit cycles of given multiplicity, together with a complete unfolding, in families of (singularly perturbed) polynomial Lienard equations. The obtained limit cycles are relaxation oscillations. Both classical Lienard equations and generalized Lienard equations are treated.
引用
收藏
页码:2073 / 2085
页数:13
相关论文
共 50 条
  • [31] On the Equations of Poizat and Lienard
    Freitag, James
    Jaoui, Remi
    Marker, David
    Nagloo, Joel
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (19) : 16478 - 16539
  • [32] Relaxation Oscillations in Singularly Perturbed Generalized Lienard Systems with Non-Generic Turning Points
    Hu, Huan
    Shen, Jianhe
    Zhou, Zheyan
    Ou, Zhonghui
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (03) : 389 - 407
  • [33] Multiple periodic solutions of some Lienard equations with p-Laplacian
    Bereanu, Cristian
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (02) : 277 - 285
  • [34] Limit cycles of polynomial Lienard systems
    [J]. Phys Rev E., 4 (5185):
  • [35] Center Conditions for Polynomial Lienard Systems
    Gine, Jaume
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2017, 16 (01) : 119 - 126
  • [36] Rational first integrals of the Lienard equations: The solution to the Poincare problem for the Lienard equations
    Llibre, Jaume
    Pessoa, Claudio
    Ribeiro, Jarne D.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2021, 93 (04):
  • [37] On the uniform boundedness of solutions of Lienard type equations with multiple deviating arguments
    Tunc, Cemil
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2011, 27 (02) : 269 - 275
  • [38] Limit cycle bifurcations in a kind of perturbed Lienard system
    Yang, Junmin
    Zhou, Lina
    [J]. NONLINEAR DYNAMICS, 2016, 85 (03) : 1695 - 1704
  • [39] Limit cycles of polynomial Lienard systems
    Llibre, J
    Pizarro, L
    Ponce, E
    [J]. PHYSICAL REVIEW E, 1998, 58 (04): : 5185 - 5187
  • [40] Bifurcations of Critical Periods for a Class of Quintic Lienard Equation
    Yu, Zhiheng
    Liu, Lingling
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (14):