Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems

被引:8
|
作者
Leng, Haitao [1 ]
Chen, Yanping [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
HDG method; A posteriori error estimator; Convection diffusion equation; Nonstationary; Adaptive algorithm; FINITE-ELEMENT METHODS; POSTERIORI ERROR ESTIMATION; RESIDUAL-FREE BUBBLES; HDG METHODS; ADVECTION; DISCRETIZATION; EQUATIONS; RECONSTRUCTION; APPROXIMATIONS; STABILIZATION;
D O I
10.1007/s10444-020-09795-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with adaptive hybridizable discontinuous Galerkin methods of nonstationary convection diffusion problems. We address first the spatially semidiscrete case and then move to the fully discrete scheme by introducing a backward Euler discretization in time. More specifically, the computable a posteriori error estimator for the time-dependent problem is obtained by using the idea of elliptic reconstruction and conforming-nonconforming decomposition. In view of the method that has been employed in the time-dependent problem, we also obtain a computable a posteriori error estimator for the fully discrete scheme. Finally, two examples show the performance of the obtained a posteriori error estimators.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology
    Hoermann, Julia M.
    Bertoglio, Cristobal
    Kronbichler, Martin
    Pfaller, Martin R.
    Chabiniok, Radomir
    Wall, Wolfgang A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2018, 34 (05)
  • [32] A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems
    Bernardo Cockburn
    Bo Dong
    Johnny Guzmán
    Journal of Scientific Computing, 2009, 40 : 141 - 187
  • [33] THE DERIVATION OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS FOR STOKES FLOW
    Cockburn, Bernardo
    Gopalakrishnan, Jayadeep
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1092 - 1125
  • [34] A projective hybridizable discontinuous Galerkin mixed method for second-order diffusion problems
    Dijoux, Loic
    Fontaine, Vincent
    Mara, Thierry Alex
    APPLIED MATHEMATICAL MODELLING, 2019, 75 : 663 - 677
  • [35] A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems
    Cockburn, Bernardo
    Dong, Bo
    Guzman, Johnny
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 141 - 187
  • [36] A hybridizable direct discontinuous Galerkin method for elliptic problems
    Yue, Huiqiang
    Cheng, Jian
    Liu, Tiegang
    Shaydurov, Vladimir
    BOUNDARY VALUE PROBLEMS, 2016,
  • [37] Hybridized discontinuous Galerkin method for convection-diffusion problems
    Oikawa, Issei
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2014, 31 (02) : 335 - 354
  • [38] ANALYSIS OF SCHWARZ METHODS FOR A HYBRIDIZABLE DISCONTINUOUS GALERKIN DISCRETIZATION
    Gander, Martin J.
    Hajian, Soheil
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 573 - 597
  • [39] STABILITY ANALYSIS OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Balazsova, Monika
    Feistauer, Miloslav
    Hadrava, Martin
    Kosik, Adam
    Programs and Algorithms of Numerical Mathematics 17, 2015, : 9 - 16
  • [40] Families of interior penalty hybridizable discontinuous Galerkin methods for second order elliptic problems
    Fabien, Maurice S.
    Knepley, Matthew G.
    Riviere, Beatrice M.
    JOURNAL OF NUMERICAL MATHEMATICS, 2020, 28 (03) : 161 - 174