Families of interior penalty hybridizable discontinuous Galerkin methods for second order elliptic problems

被引:5
|
作者
Fabien, Maurice S. [1 ]
Knepley, Matthew G. [2 ]
Riviere, Beatrice M. [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
关键词
error estimates; discontinuous Galerkin; hybridization; embedded; non-symmetric; elliptic equations; FINITE-ELEMENT METHODS; HDG METHODS; SUPERCONVERGENCE; CONSTRUCTION; CONVERGENCE; TRANSPORT; PARALLEL;
D O I
10.1515/jnma-2019-0027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The focus of this paper is the analysis of families of hybridizable interior penalty discontinuous Galerkin methods for second order elliptic problems. We derive a priori error estimates in the energy norm that are optimal with respect to the mesh size. Suboptimal L-2-norm error estimates are proven. These results are valid in two and three dimensions. Numerical results support our theoretical findings, and we illustrate the computational cost of the method.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 50 条