Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems

被引:8
|
作者
Leng, Haitao [1 ]
Chen, Yanping [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
HDG method; A posteriori error estimator; Convection diffusion equation; Nonstationary; Adaptive algorithm; FINITE-ELEMENT METHODS; POSTERIORI ERROR ESTIMATION; RESIDUAL-FREE BUBBLES; HDG METHODS; ADVECTION; DISCRETIZATION; EQUATIONS; RECONSTRUCTION; APPROXIMATIONS; STABILIZATION;
D O I
10.1007/s10444-020-09795-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with adaptive hybridizable discontinuous Galerkin methods of nonstationary convection diffusion problems. We address first the spatially semidiscrete case and then move to the fully discrete scheme by introducing a backward Euler discretization in time. More specifically, the computable a posteriori error estimator for the time-dependent problem is obtained by using the idea of elliptic reconstruction and conforming-nonconforming decomposition. In view of the method that has been employed in the time-dependent problem, we also obtain a computable a posteriori error estimator for the fully discrete scheme. Finally, two examples show the performance of the obtained a posteriori error estimators.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems
    Haitao Leng
    Yanping Chen
    Advances in Computational Mathematics, 2020, 46
  • [2] Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Metcalfe, Stephen
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1578 - 1597
  • [3] Discontinuous Galerkin schemes for nonstationary convection-diffusion problems
    Dautov, R. Z.
    Fedotov, E. M.
    11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS, 2016, 158
  • [4] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Bernardo Cockburn
    Kassem Mustapha
    Numerische Mathematik, 2015, 130 : 293 - 314
  • [5] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Cockburn, Bernardo
    Mustapha, Kassem
    NUMERISCHE MATHEMATIK, 2015, 130 (02) : 293 - 314
  • [6] CONTRACTION PROPERTY OF ADAPTIVE HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS
    Cockburn, Bernardo
    Nochetto, Ricardo H.
    Zhang, Wujun
    MATHEMATICS OF COMPUTATION, 2016, 85 (299) : 1113 - 1141
  • [7] The Hybridizable Discontinuous Galerkin Methods
    Cockburn, Bernardo
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2749 - 2775
  • [8] Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems
    Zuozheng Zhang
    Ziqing Xie
    Zhimin Zhang
    Journal of Scientific Computing, 2009, 41 : 70 - 93
  • [9] Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems
    Zhang, Zuozheng
    Xie, Ziqing
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (01) : 70 - 93
  • [10] A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR STEADY-STATE CONVECTION-DIFFUSION-REACTION PROBLEMS
    Cockburn, Bernardo
    Dong, Bo
    Guzman, Johnny
    Restelli, Marco
    Sacco, Riccardo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3827 - 3846