Analysis of Dimension Reduction by PCA and AdaBoost on Spelling Paradigm EEG Data

被引:0
|
作者
Yildirim, Asil [1 ]
Halici, Ugur [1 ]
机构
[1] Middle E Tech Univ, Dept Elect & Elect Engn, METU VIS LAB, TR-06531 Ankara, Turkey
关键词
Brain Computer Interfaces; Spelling Paradigm; Principal Component Analysis; Adaboost; Support Vector Machine; BCI COMPETITION 2003; MENTAL PROSTHESIS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Spelling Paradigm is a BCI application which aims to construct words by finding letters using P300 signals recorded via channel electrodes attached to the diverse points of the scalp. In this study effects of dimension reduction using Principal Component Analysis (PCA) and AdaBoost methods on time domain characteristics of P300 evoked potentials in Spelling Paradigm are analyzed. Support Vector Machine (SVM) is used for classification.
引用
收藏
页码:192 / 196
页数:5
相关论文
共 50 条
  • [31] PCA Dimensionality Reduction for Categorical Data
    Denisiuk, Aleksander
    [J]. COMPUTATIONAL SCIENCE, ICCS 2024, PT III, 2024, 14834 : 179 - 186
  • [32] PCA and LDA as Dimension Reduction for Individuality of Handwriting in Writer Verification
    Ramlee, Rimashadira
    Muda, Azah Kamilah
    Ahmad, Sharifah Sakinah Syed
    [J]. 2013 13TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2013, : 104 - 108
  • [33] Using dimension reduction PCA to identify ecosystem service bundles
    Marsboom, Cedric
    Vrebos, Dirk
    Staes, Jan
    Meire, Patrick
    [J]. ECOLOGICAL INDICATORS, 2018, 87 : 209 - 260
  • [34] Reference-free Reduction of Ballistocardiogram Artifact from EEG Data Using EMD-PCA
    Javed, Ehtasham
    Faye, Ibrahima
    Malik, Aamir Saeed
    Abdullah, Jafri Malin
    [J]. 2014 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS 2014), 2014,
  • [35] Hierarchical Characteristics Analysis of Forest Landscape Pattern Based on GIS and PCA Dimension Reduction Method
    Wang, Jiping
    Zhi, Xiaorong
    Huang, Jihong
    Meng, Chao
    Hu, Yanping
    Zhang, Decheng
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (01): : 195 - 201
  • [36] A New 3-D PCA Regression Method for Manifold Dimension Reduction with Image Analysis
    Lee, Kyung-Min
    Lin, Chi -Ho
    [J]. 2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 993 - 995
  • [37] HYPOTHESIS-DRIVEN DIMENSION REDUCTION AND SOURCE SEPARATION FOR TIME-DOMAIN EEG DATA
    Lin, Hause
    Cohen, Mike
    [J]. PSYCHOPHYSIOLOGY, 2020, 57 : S4 - S4
  • [38] Dimension reduction for big data
    Zhang, Tonglin
    Yang, Baijian
    [J]. STATISTICS AND ITS INTERFACE, 2018, 11 (02) : 295 - 306
  • [39] Comparison of dimension reduction techniques in the analysis of mass spectrometry data
    Isokaanta, Sini
    Kari, Eetu
    Buchholz, Angela
    Hao, Liqing
    Schobesberger, Siegfried
    Virtanen, Annele
    Mikkonen, Santtu
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (06) : 2995 - 3022
  • [40] Longitudinal data analysis using sufficient dimension reduction method
    Li, Lexin
    Yin, Xiangrong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4106 - 4115