Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery

被引:219
|
作者
Makhlof, Abdallah [1 ,2 ]
Tozuka, Yuichi [1 ]
Takeuchi, Hirofumi [1 ]
机构
[1] Gifu Pharmaceut Univ, Lab Pharmaceut Engn, Gifu 5011196, Japan
[2] Assiut Univ, Dept Ind Pharm, Assiut, Egypt
关键词
Chitosan; Nanoparticles; Mucoadhesion; Mucosal penetration; pH-sensitive; Oral insulin delivery; COATED LIPOSOMES; DERIVATIVES; MODULATION; ABSORPTION; SYSTEMS;
D O I
10.1016/j.ejps.2010.12.007
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Chitosan nanoparticles (CS NPs) have been commonly regarded as potential carriers for the mucosal delivery of therapeutic peptides because of their biocompatibility, bioadhesion and permeation enhancing properties. However, they have limited colloidal stability and readily dissociate and dissolve in the acidic gastric conditions. In the current study, CS NPs were formulated by ionic cross-linking with hydroxypropyl methylcellulose phthalate (HPMCP) as a pH-sensitive polymer and evaluated for the oral delivery of insulin. In vitro results revealed a superior acid stability of CS/HPMCP NPs with a significant control over insulin release and degradation in simulated acidic conditions with or without pepsin. Furthermore, fluorescently-labeled CS/HPMCP NPs showed a 2- to 4-fold improvement in the intestinal mucoadhesion and penetration compared to CS/TPP NPs as evidenced by quantitative fluorescence analysis and confocal microscopy. After s.c. injection to rats, no significant difference in the hypoglycemic effect of insulin solution or insulin-loaded CS/HPMCP NPs was observed, confirming the physico-chemical stability and biological activity of the entrapped peptide. Following peroral administration, CS/HPMCP NPs increased the hypoglycemic effect of insulin by more than 9.8 and 2.8-folds as compared to oral insulin solution and insulin-loaded CS/tripolyphosphate (TPP) NPs, respectively. (C) 2010 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:445 / 451
页数:7
相关论文
共 50 条
  • [41] pH-sensitive dual drug loaded janus nanoparticles by oral delivery for multimodal analgesia
    Liu, Lin
    Yao, Wendong
    Xie, Xiaowei
    Gao, Jianqing
    Lu, Xiaoyang
    JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)
  • [42] Self-Assembled pH-Sensitive Nanoparticles: A Platform for Oral Delivery of Protein Drugs
    Sonaje, Kiran
    Lin, Kun-Ju
    Wang, Jiun-Jie
    Mi, Fwu-Long
    Chen, Chiung-Tong
    Juang, Jyuhn-Huarng
    Sung, Hsing-Wen
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (21) : 3695 - 3700
  • [43] Estrone-modified pH-sensitive glycol chitosan nanoparticles for drug delivery in breast cancer
    Yang, Huan
    Tang, Cui
    Yin, Chunhua
    ACTA BIOMATERIALIA, 2018, 73 : 400 - 411
  • [44] Mesoporous silica and chitosan based pH-sensitive smart nanoparticles for tumor targeted drug delivery
    Deveci, Pervin
    Taner, Bilge
    Albayati, Safaa Hashim Mohammed
    JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, 2017, 89 (1-2) : 15 - 27
  • [45] Mesoporous silica and chitosan based pH-sensitive smart nanoparticles for tumor targeted drug delivery
    Pervin Deveci
    Bilge Taner
    Safaa Hashım Mohammed Albayatı
    Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 89 : 15 - 27
  • [46] Chitosan-based nanocapsules for pH-sensitive drug delivery
    Chen, Chih-Kuang
    Wang, Qing
    Law, Wing-Cheung
    Yu, Yun
    Jones, Charles H.
    Lai, Cheng Kee
    Prasad, Paras N.
    Cheng, Chong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [47] Magnetic and pH-sensitive nanoparticles for antitumor drug delivery
    Yu, Shufang
    Wu, Guolin
    Gu, Xin
    Wang, Jingjing
    Wang, Yinong
    Gao, Hui
    Ma, Jianbiao
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 103 : 15 - 22
  • [48] pH-sensitive Eudragit nanoparticles for mucosal drug delivery
    Yoo, Jin-Wook
    Giri, Namita
    Lee, Chi H.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2011, 403 (1-2) : 262 - 267
  • [49] pH-sensitive ternary nanoparticles for nonviral gene delivery
    Zhang, Ming-Hua
    Gu, Zhi-Peng
    Zhang, Xi
    Fan, Min-Min
    RSC ADVANCES, 2015, 5 (55): : 44291 - 44298
  • [50] Characterization of pH-sensitive chitosan/hydroxypropyl methylcellulose composite nanoparticles for delivery of melatonin in cancer therapy
    Jafari, Hessam
    Hassanpour, Mehdi
    Akbari, Ali
    Rezaie, Jafar
    Gohari, Gholamreza
    Mahdavinia, Gholam Reza
    Jabbari, Esmaiel
    MATERIALS LETTERS, 2021, 282