Magnetic and pH-sensitive nanoparticles for antitumor drug delivery

被引:105
|
作者
Yu, Shufang [1 ]
Wu, Guolin [1 ]
Gu, Xin [1 ]
Wang, Jingjing [1 ]
Wang, Yinong [1 ]
Gao, Hui [2 ]
Ma, Jianbiao [2 ]
机构
[1] Nankai Univ, Key Lab Funct Polymer Mat, Inst Polymer Chem, Tianjin 300071, Peoples R China
[2] Tianjin Univ Technol, Sch Chem & Chem Engn, Tianjin 300191, Peoples R China
关键词
Magnetic target; pH-sensitive; Poly(aspartic acid); Drug delivery; DOX; POLYMERIC MICELLE; RESPONSIVE NANOCARRIERS; RELEASE; TUMOR; DERIVATIVES; SYSTEMS; CARRIER;
D O I
10.1016/j.colsurfb.2012.10.041
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A dually responsive nanocarrier with multilayer core-shell architecture was prepared based on Fe3O4@SiO2 nanoparticles coated with mPEG-poly(L-Asparagine). Imidazole groups (pK(a) similar to 6.0) were tethered to the side chains of poly(L-Asparagine) segments by aminolysis. These nanoparticles were expected to be sensitive to both magnetic field and pH environment. The obtained materials were characterized with FTIR, dynamic light scattering, zeta-potential, TEM, TGA and hysteresis loop analysis. It was found that this Fe3O4@SiO2-polymer complex can form nano-scale core-shell-corona trilayer particles (similar to 250 nm) in aqueous solution. The Fe3O4@SiO2, poly(L-Asparagine) and mPEG segments serve as a superparamagnetic core, a pH-sensitive shell, and a hydrophilic corona, respectively. An antitumor agent, doxorubicin (DOX), was successfully loaded into the nanocarrier via combined actions of hydrophobic interaction and hydrogen bonding. The drug release profiles displayed a pH-dependent behavior. DOX release rate increased significantly as the ambient pH dropped from the physiological pH (7.4) to acidic (5.5). This is most likely due to protonation and a change in hydrophilicity of the imidazole groups in the poly(L-Asparagine) segments. This new approach may serve as a promising platform to formulate magnetic targeted drug delivery systems. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 50 条
  • [1] pH-Sensitive Polyketal Nanoparticles for Drug Delivery
    Wang, Yang
    Chang, Baisong
    Yang, Wuli
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (11) : 8266 - 8275
  • [2] pH-sensitive Eudragit nanoparticles for mucosal drug delivery
    Yoo, Jin-Wook
    Giri, Namita
    Lee, Chi H.
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2011, 403 (1-2) : 262 - 267
  • [3] A Magnetic and pH-Sensitive Composite Nanoparticle for Drug Delivery
    Wang, Xin
    Gao, Ziyu
    Zhang, Long
    Wang, Huiming
    Hu, Xiaohong
    [J]. JOURNAL OF NANOMATERIALS, 2018, 2018
  • [4] Drug delivery of pH-Sensitive nanoparticles into the liver cancer cells
    Saadat, Maryam
    Mostafaei, Farid
    Mahdinloo, Somaye
    Abdi, Mahdieh
    Zahednezhad, Fahimeh
    Zakeri-Milani, Parvin
    Valizadeh, Hadi
    [J]. JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2021, 63
  • [5] Doxorubicin-conjugated magnetic iron oxide nanoparticles for pH-sensitive and magnetic responsive drug delivery
    Liu, Lei
    Yu, Ping
    Zhang, Yang
    Wu, Bo
    Cui, Can
    Wu, Ming
    Wang, Cai-Xia
    Zhuo, Ren-Xi
    Huang, Shi-Wen
    [J]. JOURNAL OF CONTROLLED RELEASE, 2015, 213 : E67 - E67
  • [6] pH-Sensitive Biomaterials for Drug Delivery
    Zhuo, Shijie
    Zhang, Feng
    Yu, Junyu
    Zhang, Xican
    Yang, Guangbao
    Liu, Xiaowen
    [J]. MOLECULES, 2020, 25 (23):
  • [7] pH-sensitive polymers for drug delivery
    Huh, Kang Moo
    Kang, Han Chang
    Lee, Young Ju
    Bae, You Han
    [J]. MACROMOLECULAR RESEARCH, 2012, 20 (03) : 224 - 233
  • [8] PH-sensitive liposomes in drug delivery
    Paliwal, Shivani Rai
    Paliwal, Rishi
    Vyas, Suresh P.
    [J]. RSC Smart Materials, 2013, 1 (01): : 80 - 93
  • [9] pH-sensitive polymers for drug delivery
    Kang Moo Huh
    Han Chang Kang
    Young Ju Lee
    You Han Bae
    [J]. Macromolecular Research, 2012, 20 : 224 - 233
  • [10] DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery
    Liu, Pengcheng
    Wu, Qiong
    Li, Yanmei
    Li, Pengfei
    Yuan, Jiang
    Meng, Xianwei
    Xiao, Yinghong
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 181 : 1012 - 1018