Gabor optical coherence tomographic angiography (GOCTA) (Part I): human retinal imaging &ITin vivo&IT

被引:5
|
作者
Chen, Chaoliang [1 ]
Yang, Victor X. D. [1 ,2 ,3 ]
机构
[1] Ryerson Univ, Dept Elect & Comp Engn, Biophoton & Bioengn Lab, Toronto, ON, Canada
[2] Sunnybrook Hlth Sci Ctr, Div Neurosurg, Toronto, ON, Canada
[3] Univ Toronto, Fac Med, Div Neurosurg, Toronto, ON, Canada
来源
BIOMEDICAL OPTICS EXPRESS | 2017年 / 8卷 / 12期
基金
加拿大自然科学与工程研究理事会;
关键词
SPECKLE-VARIANCE; BLOOD-FLOW; HIGH-SPEED; AMPLITUDE-DECORRELATION; TISSUE BEDS; DOPPLER; MICROVASCULATURE; MICROANGIOGRAPHY; MICROCIRCULATION;
D O I
10.1364/BOE.8.005724
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recently, parallel high A-line speed and wide field imaging for optical coherence tomography angiography (OCTA) has become more prevalent, resulting in a dramatic increase of data quantity which poses a challenge for real time imaging even for GPU in data processing. In this manuscript, we propose a new OCTA processing technique, Gabor optical coherence tomographic angiography (GOCTA), for label-free human retinal angiography imaging. In spectral domain optical coherence tomography (SDOCT), k-space resampling and Fourier transform (FFT) are required for the entire data set of interference fringes to calculate blood flow information in previous OCTA algorithms, which are computationally intensive. As adults' eye anterior-posterior radii are nearly constant, only 3 A-scan lines need to be processed to obtain the gross orientation of the retina by using a sphere model. Subsequently, the en face microvascular images can be obtained by using the GOCTA algorithm from interference fringes directly without the steps of k-space resampling, numerical dispersion compensation, FFT. and maximum (mean) projection, resulting in a significant improvement of the data processing speed by 4 to 20 times faster than the existing methods. GOCTA is potentially suitable for SDOCT systems in en face preview applications requiring real-time microvascular imaging. (C) 2017 Optical Society of America
引用
收藏
页码:5724 / 5734
页数:11
相关论文
共 50 条
  • [41] Multimodal Imaging of Retinal Vein Occlusions using Optical Coherence Tomography Angiography and En Face Optical Coherence Tomography
    Heiferman, Michael J.
    Nesper, Peter L.
    Gill, Manjot
    Fawzi, Amani A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [42] Investigation of alterations in multifractality in optical coherence tomographic images of in vivo human retina
    Das, Nandan Kumar
    Mukhopadhyay, Sabyasachi
    Ghosh, Nirmalya
    Chhablani, Jay
    Richhariya, Ashutosh
    Rao, Kompalli Divakar
    Sahoo, Naba Kishore
    JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (09)
  • [43] In vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography
    Yazdanfar, S
    Rollins, AM
    Izatt, JA
    COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICAL SCIENCE AND CLINICAL APPLICATIONS III, PROCEEDINGS OF, 1999, 3598 : 177 - 184
  • [44] In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics
    Zhang, Furu
    Kovalick, Katherine
    Raghavendra, Achyut
    Soltanian-Zadeh, Somayyeh
    Farsiu, Sina
    Hammer, Daniel X.
    Liu, Zhuolin
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (08): : 4675 - 4688
  • [45] In-vivo human retinal imaging with pulsed illumination spectral-domain optical coherence tomography
    You, Jang-Woo
    Chen, Teresa C.
    Mujat, Mircea
    Park, B. Hyle
    de Boer, Johannes F.
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE XI, 2007, 6429
  • [46] In vivo imaging of the hyaloid vascular regression and retinal and choroidal vascular development in rat eyes using optical coherence tomography angiography
    Yongjoo Kim
    Jang Ryul Park
    Hye Kyoung Hong
    Myounghee Han
    Jingu Lee
    Pilhan Kim
    Se Joon Woo
    Kyu Hyung Park
    Wang-Yuhl Oh
    Scientific Reports, 10
  • [47] In vivo imaging of the hyaloid vascular regression and retinal and choroidal vascular development in rat eyes using optical coherence tomography angiography
    Kim, Yongjoo
    Park, Jang Ryul
    Hong, Hye Kyoung
    Han, Myounghee
    Lee, Jingu
    Kim, Pilhan
    Woo, Se Joon
    Park, Kyu Hyung
    Oh, Wang-Yuhl
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [48] Optical coherence tomography angiography imaging of the retinal microvasculature is unimpeded by macular xanthophyll pigment
    Elnahry, Ayman G.
    Ramsey, David J.
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2020, 48 (07): : 1012 - 1014
  • [49] Relative retinal flow velocity detection using optical coherence tomography angiography imaging
    Richter, Dmitry
    Fard, Ali M.
    Straub, Jochen
    Wei, Wei
    Zhang, Qinqin
    Wang, Ruikang K.
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (11): : 6710 - 6720
  • [50] HIGH-SPEED IN-VIVO RETINAL IMAGING WITH OPTICAL COHERENCE TOMOGRAPHY
    IZATT, JA
    HEE, MR
    HUANG, D
    SWANSON, EA
    LIN, CP
    SCHUMAN, JS
    PULIAFITO, CA
    FUJIMOTO, JG
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1994, 35 (04) : 1729 - 1729