Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells

被引:104
|
作者
Ahmad, Firdous [1 ]
Bhat, Ghulam Mohiuddin [1 ]
Khademolhosseini, Hossein [2 ]
Azimi, Saeid [3 ]
Angizi, Shaahin [4 ]
Navi, Keivan [4 ]
机构
[1] Univ Kashmir, Dept Elect & IT, Srinagar 190006, Jammu & Kashmir, India
[2] Islamic Azad Univ, Sci & Res Branch, Dept Comp Engn, Tehran, Iran
[3] Islamic Azad Univ, Qazvin Branch, Fac Comp & Informat Technol Engn, Qazvin, Iran
[4] Inst Res Fundamental Sci IPM, Sch Comp Sci, Tehran 1953833511, Iran
关键词
Quantum-dot cellular automata; XOR gate; Full adder design; Low power circuit; Single layer circuit; DESIGN; DISSIPATION;
D O I
10.1016/j.jocs.2016.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quantum-dot cellular automata is one of the most prominent nanotechnologies considered to continue scaling-down trend of sub-micron electronics. Therefore, numerous combinational and sequential circuits have been redesigned and implemented using this new technology. Considering QCA full adder cell as the basic building block in designing arithmetic circuits, great deals of attention have been paid to this research field targeting to diminish circuit latency and complexity. In this paper, contrary to conventional gate-level implementation approaches used in QCA technology, a new explicit interaction approach is utilized for designing QCA circuits. Thus, in the first step, a new well-optimized structure for three-input Exclusive-OR gate (TIED) is proposed that is based on cell interaction. Accordingly, a low complexity and ultra-high speed QCA one-bit full-adder cell is designed employing this structure. In the next step, a comprehensive energy consumption analysis and comparison is performed over previously published QCA full-adder cells and the proposed design. QCADesigner and QCAPro tools are used for verifying circuit functioning and estimating dissipated energy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 15
页数:8
相关论文
共 50 条
  • [41] Circuit switching with Quantum-Dot Cellular Automata
    Das, Jadav Chandra
    De, Debashis
    NANO COMMUNICATION NETWORKS, 2017, 14 : 16 - 28
  • [42] Design Rules for Quantum-dot Cellular Automata
    Liu, Weiqiang
    Lu, Liang
    O'Neill, Maire
    Swartzlander, Earl E., Jr.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 2361 - 2364
  • [43] Quantum-dot cellular automata at a molecular scale
    Lieberman, M
    Chellamma, S
    Varughese, B
    Wang, YL
    Lent, C
    Bernstein, GH
    Snider, G
    Peiris, FC
    MOLECULAR ELECTRONICS II, 2002, 960 : 225 - 239
  • [44] Clocking of molecular quantum-dot cellular automata
    Hennessy, K
    Lent, CS
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (05): : 1752 - 1755
  • [45] New phenomenon of quantum-dot cellular automata
    Zeng L.-G.
    Wang Q.-K.
    Dai Y.-B.
    Journal of Zhejiang University-SCIENCE A, 2005, 6 (10): : 1090 - 1094
  • [46] Quantum-Dot Cellular Automata Serial Comparator
    Lampreht, Blaz
    Stepancic, Luka
    Vizec, Igor
    Zankar, Bostjan
    Mraz, Miha
    Bajec, Iztok Lebar
    Pecar, Primoz
    11TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN - ARCHITECTURES, METHODS AND TOOLS : DSD 2008, PROCEEDINGS, 2008, : 447 - 452
  • [47] Parallel Multipliers for Quantum-Dot Cellular Automata
    Kim, Seong-Wan
    Swartzlander, Earl E., Jr.
    2009 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE, 2009, : 68 - 72
  • [48] Clocked molecular quantum-dot cellular automata
    Lent, CS
    Isaksen, B
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (09) : 1890 - 1896
  • [49] Combinational circuit design based on quantum-dot cellular automata
    Department of Computer Engineering, Kumoh National Institute of Technology, Gumi, Korea, Republic of
    Int. J. Control Autom., 6 (369-378):
  • [50] Quantum-dot Cellular Automata: Review Paper
    Majeed, Ali H.
    Zainal, Mohd Shamian
    Alkaldy, Esam
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2019, 11 (08): : 143 - 158