The relaxed nonlinear PHSS-like iteration method for absolute value equations

被引:26
|
作者
Zhang, Jian-Jun [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Absolute value equations; HSS; Semismooth; Positive definite; System of weakly nonlinear equations; HERMITIAN SPLITTING METHODS; MONOTONE CONVERGENCE; SYSTEMS;
D O I
10.1016/j.amc.2015.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finding the solution of the absolute value equation (AVE) Ax - vertical bar x vertical bar = b has attracted much attention in recent years. In this paper, we propose a relaxed nonlinear PHSS-like iterative method, which is more efficient than the Picard-HSS iterative method for the AVE, and is a generalization of the nonlinear HSS-like iteration method for the AVE. By using the theory of nonsmooth analysis, we prove the convergence of the relaxed nonlinear PHSS-like iterative method for the AVE. Numerical experiments are given to demonstrate the feasibility, robustness and effectiveness of the relaxed nonlinear HSS-like method. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:266 / 274
页数:9
相关论文
共 50 条
  • [1] A relaxed generalized Newton iteration method for generalized absolute value equations
    Cao, Yang
    Shi, Quan
    Zhu, Sen-Lai
    AIMS MATHEMATICS, 2021, 6 (02): : 1258 - 1275
  • [2] The relaxed MGHSS-like method for absolute value equations
    Shao, Xin-Hui
    Yang, Shao-Xiong
    FILOMAT, 2023, 37 (26) : 8845 - 8865
  • [3] Relaxed modified Newton-based iteration method for generalized absolute value equations
    Shao, Xin-Hui
    Zhao, Wan-Chen
    AIMS MATHEMATICS, 2023, 8 (02): : 4714 - 4725
  • [4] On the SOR-like iteration method for solving absolute value equations
    Guo, Peng
    Wu, Shi-Liang
    Li, Cui-Xia
    APPLIED MATHEMATICS LETTERS, 2019, 97 : 107 - 113
  • [5] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [6] On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations
    Zhang, Yiming
    Yu, Dongmei
    Yuan, Yifei
    SYMMETRY-BASEL, 2023, 15 (03):
  • [7] The Picard–HSS iteration method for absolute value equations
    Davod Khojasteh Salkuyeh
    Optimization Letters, 2014, 8 : 2191 - 2202
  • [8] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Chen, Cairong
    Huang, Bo
    Yu, Dongmei
    Han, Deren
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 799 - 826
  • [9] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Cairong Chen
    Bo Huang
    Dongmei Yu
    Deren Han
    Numerical Algorithms, 2024, 96 : 799 - 826