Families of Parsimonious Finite Mixtures of Regression Models

被引:15
|
作者
Dang, Utkarsh J. [1 ]
McNicholas, Paul D. [2 ]
机构
[1] McMaster Univ, Dept Biol, Hamilton, ON, Canada
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
关键词
Concomitant variables; EM algorithm; Finite mixtures of regressions; Mixture models; Multivariate response; MULTIVARIATE;
D O I
10.1007/978-3-319-17377-1_9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Finite mixtures of regression (FMR) models offer a flexible framework for investigating heterogeneity in data with functional dependencies. These models can be conveniently used for unsupervised learning on data with clear regression relationships. We extend such models by imposing an eigen-decomposition on the multivariate error covariance matrix. By constraining parts of this decomposition, we obtain families of parsimonious mixtures of regressions and mixtures of regressions with concomitant variables. These families of models account for correlations between multiple responses. An expectation-maximization algorithm is presented for parameter estimation and performance is illustrated on simulated and real data.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 50 条
  • [1] Finite mixtures of censored Poisson regression models
    Karlis, Dimitris
    Papatla, Purushottam
    Roy, Sudipt
    [J]. STATISTICA NEERLANDICA, 2016, 70 (02) : 100 - 122
  • [2] IDENTIFIABILITY OF FINITE MIXTURES OF LOGISTIC-REGRESSION MODELS
    FOLLMANN, DA
    LAMBERT, D
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 27 (03) : 375 - 381
  • [3] Finite mixtures of quantile and M-quantile regression models
    Alfo, Marco
    Salvati, Nicola
    Ranallli, M. Giovanna
    [J]. STATISTICS AND COMPUTING, 2017, 27 (02) : 547 - 570
  • [4] On Estimating Finite Mixtures of Multivariate Regression and Simultaneous Equation Models
    Jedidi, Kamel
    Ramaswamy, Venkatram
    DeSarbo, Wayne S.
    Wedel, Michel
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 1996, 3 (03) : 266 - 289
  • [5] Modelling background noise in finite mixtures of generalized linear regression models
    Leisch, Friedrich
    [J]. COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2008, : 385 - 396
  • [6] Analysis of Income of EU Residents Using Finite Mixtures of Regression Models
    Vankatova, Kristyna
    Fiserova, Eva
    [J]. 34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 875 - 880
  • [7] ENVELOPE MODELS FOR PARSIMONIOUS AND EFFICIENT MULTIVARIATE LINEAR REGRESSION REJOINDER
    Cook, R. Dennis
    Li, Bing
    Chiaromonte, Francesca
    Su, Zhihua
    [J]. STATISTICA SINICA, 2010, 20 (03) : 999 - 1010
  • [8] An approach for constructing parsimonious generalized Gaussian kernel regression models
    Wang, XX
    Chen, S
    Brown, DJ
    [J]. NEUROCOMPUTING, 2004, 62 (1-4) : 441 - 457
  • [9] ENVELOPE MODELS FOR PARSIMONIOUS AND EFFICIENT MULTIVARIATE LINEAR REGRESSION COMMENT
    He, Xuming
    Zhou, Jianhui
    [J]. STATISTICA SINICA, 2010, 20 (03) : 971 - 978
  • [10] A deterministic annealing approach for parsimonious design of piecewise regression models
    Rao, AV
    Miller, DJ
    Rose, K
    Gersho, A
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (02) : 159 - 173