ENVELOPE MODELS FOR PARSIMONIOUS AND EFFICIENT MULTIVARIATE LINEAR REGRESSION REJOINDER

被引:0
|
作者
Cook, R. Dennis [1 ]
Li, Bing [2 ]
Chiaromonte, Francesca [2 ]
Su, Zhihua [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new parsimonious version of the classical multivariate normal linear model, yielding a maximum likelihood estimator (MLE) that is asymptotically less variable than the MLE based on the usual model. Our approach is based on the construction of a link between the mean function and the covariance matrix, using the minimal reducing subspace of the latter that accommodates the former. This leads to a multivariate regression model that we call the envelope model, where the number of parameters is maximally reduced. The MLE from the envelope model can be substantially less variable than the usual MLE, especially when the mean function varies in directions that are orthogonal to the directions of maximum variation for the covariance matrix.
引用
收藏
页码:999 / 1010
页数:12
相关论文
共 50 条
  • [1] ENVELOPE MODELS FOR PARSIMONIOUS AND EFFICIENT MULTIVARIATE LINEAR REGRESSION COMMENT
    He, Xuming
    Zhou, Jianhui
    [J]. STATISTICA SINICA, 2010, 20 (03) : 971 - 978
  • [2] Efficient simultaneous partial envelope model in multivariate linear regression
    Zhang, Jing
    Huang, Zhensheng
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (07) : 1373 - 1400
  • [3] On the likelihood ratio test for envelope models in multivariate linear regression
    Schott, James R.
    [J]. BIOMETRIKA, 2013, 100 (02) : 531 - 537
  • [4] Groupwise partial envelope model: efficient estimation in multivariate linear regression
    Zhang, Jing
    Huang, Zhensheng
    Jiang, Zhiqiang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (07) : 2924 - 2940
  • [5] Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression
    Su, Z.
    Zhu, G.
    Chen, X.
    Yang, Y.
    [J]. BIOMETRIKA, 2016, 103 (03) : 579 - 593
  • [6] Efficient estimation of reduced-rank partial envelope model in multivariate linear regression
    Zhang, Jing
    Huang, Zhensheng
    Xiong, Yan
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (02)
  • [7] SCALED PARTIAL ENVELOPE MODEL IN MULTIVARIATE LINEAR REGRESSION
    Zhang, Jing
    Huang, Zhensheng
    Zhu, Lixing
    [J]. STATISTICA SINICA, 2023, 33 (02) : 663 - 683
  • [8] Simple linear and multivariate regression models
    Rodriguez del Aguila, M. M.
    Benitez-Parejo, N.
    [J]. ALLERGOLOGIA ET IMMUNOPATHOLOGIA, 2011, 39 (03) : 159 - 173
  • [9] Bootstrapping for multivariate linear regression models
    Eck, Daniel J.
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 134 : 141 - 149
  • [10] NEW PARSIMONIOUS MULTIVARIATE SPATIAL MODEL: SPATIAL ENVELOPE
    Rekabdarkolaee, Hossein Moradi Rekabdarkolaee Moradi
    Wang, Qin
    Naji, Zahra
    Fuentes, Montserrat
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1583 - 1604