ENVELOPE MODELS FOR PARSIMONIOUS AND EFFICIENT MULTIVARIATE LINEAR REGRESSION COMMENT

被引:0
|
作者
Helland, Inge S. [1 ]
机构
[1] Univ Oslo, Dept Math, NO-0316 Oslo, Norway
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cook, Li and Chiaromonte have introduced the interesting notion of an envelope model, which provides an efficient approach for high-dimensional data analysis. The envelope model looks for the "minimal sufficient response" for the regression of Y on X. Our discussion focuses mainly on a two-staged estimation approach, PLS-MLE, which is workable for n << r + p. The partial-least-squares approach is used to extract an intermediate response subspace. This subspace is assumed to be big enough to contain the envelope subspace, but also small enough to accommodate a stable MLE.
引用
收藏
页码:978 / 981
页数:4
相关论文
共 50 条
  • [1] ENVELOPE MODELS FOR PARSIMONIOUS AND EFFICIENT MULTIVARIATE LINEAR REGRESSION
    Cook, R. Dennis
    Li, Bing
    Chiaromonte, Francesca
    STATISTICA SINICA, 2010, 20 (03) : 927 - 960
  • [2] Efficient simultaneous partial envelope model in multivariate linear regression
    Zhang, Jing
    Huang, Zhensheng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (07) : 1373 - 1400
  • [3] On the likelihood ratio test for envelope models in multivariate linear regression
    Schott, James R.
    BIOMETRIKA, 2013, 100 (02) : 531 - 537
  • [4] Groupwise partial envelope model: efficient estimation in multivariate linear regression
    Zhang, Jing
    Huang, Zhensheng
    Jiang, Zhiqiang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (07) : 2924 - 2940
  • [5] Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression
    Su, Z.
    Zhu, G.
    Chen, X.
    Yang, Y.
    BIOMETRIKA, 2016, 103 (03) : 579 - 593
  • [6] Efficient estimation of reduced-rank partial envelope model in multivariate linear regression
    Zhang, Jing
    Huang, Zhensheng
    Xiong, Yan
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (02)
  • [7] SCALED PARTIAL ENVELOPE MODEL IN MULTIVARIATE LINEAR REGRESSION
    Zhang, Jing
    Huang, Zhensheng
    Zhu, Lixing
    STATISTICA SINICA, 2023, 33 (02) : 663 - 683
  • [8] Simple linear and multivariate regression models
    Rodriguez del Aguila, M. M.
    Benitez-Parejo, N.
    ALLERGOLOGIA ET IMMUNOPATHOLOGIA, 2011, 39 (03) : 159 - 173
  • [9] Bootstrapping for multivariate linear regression models
    Eck, Daniel J.
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 141 - 149
  • [10] NEW PARSIMONIOUS MULTIVARIATE SPATIAL MODEL: SPATIAL ENVELOPE
    Rekabdarkolaee, Hossein Moradi Rekabdarkolaee Moradi
    Wang, Qin
    Naji, Zahra
    Fuentes, Montserrat
    STATISTICA SINICA, 2020, 30 (03) : 1583 - 1604