Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping

被引:3
|
作者
Han, Zhong-Jie [1 ]
Yu, Kai [2 ]
Zhang, Qiong [3 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin Key Lab BIIT, Tianjin 300354, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin, Peoples R China
[3] Beijing Inst Technol, Sch Math, Beijing Key Lab MCAACI, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
EXPONENTIAL STABILITY; ELASTIC-SYSTEMS; STABILIZATION; REGULARITY; DECAY;
D O I
10.1002/zamm.202000275
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the longtime behavior of a coupled multidimensional elastic-viscoelastic waves system is considered. This model consists of an elastic wave domain and an viscoelastic wave domain, connecting by a common interface. The dissipative damping is produced in the viscoelastic wave via the boundary connection. By the resolvent estimate together with microlocal analysis argument, we show that the corresponding semigroup is polynomially stable with decay rate t(-1) under certain conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping
    El Arwadi, Toufic
    Youssef, Wael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1831 - 1857
  • [42] Stabilization of a coupled wave equation with one localized nonregular fractional Kelvin-Voigt damping with nonsmooth coefficients
    Zhang, Li
    Liu, Wenjun
    An, Yanning
    Cao, Xinxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9119 - 9146
  • [43] Stabilization for the Wave Equation with Singular Kelvin–Voigt Damping
    Kaïs Ammari
    Fathi Hassine
    Luc Robbiano
    Archive for Rational Mechanics and Analysis, 2020, 236 : 577 - 601
  • [44] Blow-Up and Global Existence Analysis for the Viscoelastic Wave Equation with a Frictional and a Kelvin-Voigt Damping
    Wang, Fosheng
    Wang, Chengqiang
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [45] Energy decay rate of the wave-wave transmission system with Kelvin-Voigt damping
    Zhang, Hua-Lei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8721 - 8747
  • [46] Extremum Seeking for a Class of Wave Partial Differential Equations With Kelvin-Voigt Damping
    Silva, Paulo Cesar Souza
    Pellanda, Paulo Cesar
    Oliveira, Tiago Roux
    de Andrade, Gustavo Artur
    Krstic, Miroslav
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 43 - 48
  • [47] Boundary-to-Displacement asymptotic gains for wave systems with Kelvin-Voigt damping
    Karafyllis, Iasson
    Kontorinaki, Maria
    Krstic, Miroslav
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (10) : 2822 - 2833
  • [48] Extremum Seeking for a Class of Wave Partial Differential Equations with Kelvin-Voigt Damping
    Silva, Paulo Cesar Souza
    Pellanda, Paulo Cesar
    Oliveira, Tiago Roux
    De Andrade, Gustavo Artur
    Krstic, Miroslav
    IEEE Control Systems Letters, 2024, 8 : 43 - 48
  • [49] Effect of local Kelvin-Voigt damping on eigenfrequencies of cantilevered twisted Timoshenko beams
    Chen, Wei-Ren
    37TH NATIONAL CONFERENCE ON THEORETICAL AND APPLIED MECHANICS (37TH NCTAM 2013) & THE 1ST INTERNATIONAL CONFERENCE ON MECHANICS (1ST ICM), 2014, 79 : 160 - 165
  • [50] STABILIZATION OF WAVE EQUATION ON CUBOIDAL DOMAIN VIA KELVIN-VOIGT DAMPING: A CASE WITHOUT GEOMETRIC CONTROL CONDITION
    Yu, Kai
    Han, Zhong-Jie
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (03) : 1973 - 1988