Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping

被引:3
|
作者
Han, Zhong-Jie [1 ]
Yu, Kai [2 ]
Zhang, Qiong [3 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin Key Lab BIIT, Tianjin 300354, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin, Peoples R China
[3] Beijing Inst Technol, Sch Math, Beijing Key Lab MCAACI, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
EXPONENTIAL STABILITY; ELASTIC-SYSTEMS; STABILIZATION; REGULARITY; DECAY;
D O I
10.1002/zamm.202000275
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the longtime behavior of a coupled multidimensional elastic-viscoelastic waves system is considered. This model consists of an elastic wave domain and an viscoelastic wave domain, connecting by a common interface. The dissipative damping is produced in the viscoelastic wave via the boundary connection. By the resolvent estimate together with microlocal analysis argument, we show that the corresponding semigroup is polynomially stable with decay rate t(-1) under certain conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Stability for the Timoshenko beam system with local Kelvin-Voigt damping
    Zhao, HL
    Liu, KS
    Zhang, CG
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (03) : 655 - 666
  • [32] Stability of elastic transmission systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    EUROPEAN JOURNAL OF CONTROL, 2015, 23 : 84 - 93
  • [33] Sharp stability of a string with local degenerate Kelvin-Voigt damping
    Han, Zhong-Jie
    Liu, Zhuangyi
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [34] Suspension bridge with Kelvin-Voigt damping
    Correia, Leandro
    Raposo, Carlos
    Ribeiro, Joilson
    Gutemberg, Luiz
    CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 11 - 19
  • [35] Exponential stability of an elastic string with local Kelvin-Voigt damping
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06): : 1009 - 1015
  • [36] Stability of the wave equation with localized Kelvin-Voigt damping and dynamic Wentzell boundary conditions with delay
    Dahmani, Abdelhakim
    Khemmoudj, Ammar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3649 - 3673
  • [37] On the spectrum of Euler-Bernoulli beam equation with Kelvin-Voigt damping
    Zhang, Guo-Dong
    Guo, Bao-Zhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 210 - 229
  • [38] Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (10) : 1933 - 1950
  • [39] Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping
    Chen, SP
    Liu, KS
    Liu, ZY
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (02) : 651 - 668
  • [40] STABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING AND NONSMOOTH COEFFICIENT AT INTERFACE
    Liu, Zhuangyi
    Zhang, Qiong
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (04) : 1859 - 1871