Fast Spectral Clustering via the Nystrom Method

被引:0
|
作者
Choromanska, Anna [1 ]
Jebara, Tony [2 ]
Kim, Hyungtae [2 ]
Mohan, Mahesh [3 ]
Monteleoni, Claire [3 ]
机构
[1] Columbia Univ, Dept Elect Engn, CEPSR 624, New York, NY 10027 USA
[2] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[3] George Washington Univ, Dept Comp Sci, New York, NY USA
来源
关键词
spectral clustering; Nystrom method; large-scale clustering; sampling; sparsity; performance guarantees; error bounds; unsupervised learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose and analyze a fast spectral clustering algorithm with computational complexity linear in the number of data points that is directly applicable to large-scale datasets. The algorithm combines two powerful techniques in machine learning: spectral clustering algorithms and Nystrom methods commonly used to obtain good quality low rank approximations of large matrices. The proposed algorithm applies the Nystrom approximation to the graph Laplacian to perform clustering. We provide theoretical analysis of the performance of the algorithm and show the error bound it achieves and we discuss the conditions under which the algorithm performance is comparable to spectral clustering with the original graph Laplacian. We also present empirical results.
引用
收藏
页码:367 / 381
页数:15
相关论文
共 50 条
  • [21] Fast Compressive Spectral Clustering
    Li, Ting
    Zhang, Yiming
    Li, Dongsheng
    Liu, Xinwang
    Peng, Yuxing
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 949 - 954
  • [22] Fast Approximate Spectral Clustering
    Yan, Donghui
    Huang, Ling
    Jordan, Michael I.
    [J]. KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 907 - 915
  • [23] Fast convergence for spectral clustering
    Aiello, M.
    Andreozzi, F.
    Catanzariti, E.
    Isgro, F.
    Santoro, M.
    [J]. 14TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2007, : 641 - +
  • [24] Fast kernel spectral clustering
    Langone, Rocco
    Suykens, Johan A. K.
    [J]. NEUROCOMPUTING, 2017, 268 : 27 - 33
  • [25] Improving the Modified Nystrom Method Using Spectral Shifting
    Wang, Shusen
    Zhang, Chao
    Qian, Hui
    Zhang, Zhihua
    [J]. PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 611 - 620
  • [26] Fast Kernel Independent Component Analysis with Nystrom Method
    Wang, He
    Xu, Weixia
    Guan, Naiyang
    Yang, Canqun
    [J]. PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 1016 - 1020
  • [27] Fast spectral clustering method based on graph similarity matrix completion
    Ma, Xu
    Zhang, Shengen
    Pena-Pena, Karelia
    Arce, Gonzalo R.
    [J]. SIGNAL PROCESSING, 2021, 189
  • [28] Spectral clustering using Nystrom approximation for the accurate identification of cancer molecular subtypes
    Shi, Mingguang
    Xu, Guofu
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [29] Fast Large-Scale Spectral Clustering via Explicit Feature Mapping
    He, Li
    Ray, Nilanjan
    Guan, Yisheng
    Zhang, Hong
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (03) : 1058 - 1071
  • [30] Fast Approximate Spectral Clustering via Adaptive Filtering of Random Graph Signals
    Yu, Tianyu
    Zhao, Yonghua
    Huang, Rongfeng
    Liu, Shifang
    Zhang, Xinyin
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 511 - 514