Fast Compressive Spectral Clustering

被引:5
|
作者
Li, Ting [1 ]
Zhang, Yiming [1 ]
Li, Dongsheng [1 ]
Liu, Xinwang [1 ]
Peng, Yuxing [1 ]
机构
[1] Natl Univ Def Technol, Sch Comp, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICDM.2017.120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compressive spectral clustering (CSC) efficiently leverages graph filter and random sampling techniques to speed up clustering process. However, we find that CSC algorithm suffers from two main problems: i) The direct use of the dichotomy and eigencount techniques for estimating laplacian matrix's k-th eigenvalue is expensive. ii) The computation of polynomial approximation repeats in each iteration for every cluster in the interpolation process, which occupies most of the computation time of CSC. To address these problems, we propose a new approach called FCSC for fast compressive spectral clustering. FCSC addresses the first problem by assuming that the eigenvalues approximately satisfy local uniform distribution, and addresses the second problem by recalculating the pairwise similarity between nodes with low-dimensional representation to reconstruct denoised laplacian matrix. The time complexity of reconstruction is linear with the number of non-zeros in laplacian matrix. As experimentally demonstrated on artificial and real-world datasets, our approach significantly reduces the computation time while preserving high clustering accuracy comparable to previous designs, verifying the effectiveness of FCSC.
引用
收藏
页码:949 / 954
页数:6
相关论文
共 50 条
  • [1] Compressive Spectral Clustering
    Hunter, Blake
    Strohmer, Thomas
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1720 - 1722
  • [2] Compressive Spectral Clustering
    Tremblay, Nicolas
    Puy, Gilles
    Gribonval, Remi
    Vandergheynst, Pierre
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [3] Fast Compressive Spectral Clustering for Large-Scale Sparse Graph
    Li, Ting
    Zhang, Yiming
    Liu, Hao
    Xue, Guangtao
    Liu, Ling
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (01) : 193 - 202
  • [4] On Consistency of Compressive Spectral Clustering
    Pydi, Muni Sreenivas
    Dukkipati, Ambedkar
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2102 - 2106
  • [5] Fast Approximate Spectral Clustering
    Yan, Donghui
    Huang, Ling
    Jordan, Michael I.
    [J]. KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 907 - 915
  • [6] Fast convergence for spectral clustering
    Aiello, M.
    Andreozzi, F.
    Catanzariti, E.
    Isgro, F.
    Santoro, M.
    [J]. 14TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2007, : 641 - +
  • [7] Fast kernel spectral clustering
    Langone, Rocco
    Suykens, Johan A. K.
    [J]. NEUROCOMPUTING, 2017, 268 : 27 - 33
  • [8] Fast Immune Greedy Spectral Clustering
    Gou, S. P.
    Zhang, J.
    Jiao, L. C.
    Yang, J. Y.
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (01): : 375 - 385
  • [9] Fast Multiview Clustering With Spectral Embedding
    Yang, Ben
    Zhang, Xuetao
    Nie, Feiping
    Wang, Fei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3884 - 3895
  • [10] Coded Aperture Design for Compressive Spectral Subspace Clustering
    Hinojosa, Carlos
    Bacca, Jorge
    Arguello, Henry
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1589 - 1600