Quantifying Gland Morphology for Computerized Prostate Cancer Detection and Gleason Grading.

被引:0
|
作者
Sparks, R. E. [1 ]
Madabhhushi, A. [1 ]
机构
[1] Rutgers State Univ, Piscataway, NJ USA
关键词
D O I
暂无
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
1452
引用
收藏
页码:342A / 342A
页数:1
相关论文
共 50 条
  • [31] Relationship between microRNA expression and Gleason grading system in prostate cancer
    Tsuchiyama, Katsuki
    Ito, Hideaki
    Taga, Minekatsu
    Oshinoya, Konosuke
    Nagano, Kenichi
    Yokoyama, Osamu
    Itoh, Hiroshi
    CANCER RESEARCH, 2012, 72
  • [32] Automatic Gleason grading of prostate cancer using SLIM and machine learning
    Nguyen, Tan H.
    Sridharan, Shamira
    Marcias, Virgilia
    Balla, Andre K.
    Do, Minh N.
    Popescu, Gabriel
    QUANTITATIVE PHASE IMAGING II, 2016, 9718
  • [33] Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
    Bulten, Wouter
    Kartasalo, Kimmo
    Chen, Po-Hsuan Cameron
    Strom, Peter
    Pinckaers, Hans
    Nagpal, Kunal
    Cai, Yuannan
    Steiner, David F.
    van Boven, Hester
    Vink, Robert
    Hulsbergen-van de Kaa, Christina
    van der Laak, Jeroen
    Amin, Mahul B.
    Evans, Andrew J.
    van der Kwast, Theodorus
    Allan, Robert
    Humphrey, Peter A.
    Gronberg, Henrik
    Samaratunga, Hemamali
    Delahunt, Brett
    Tsuzuki, Toyonori
    Hakkinen, Tomi
    Egevad, Lars
    Demkin, Maggie
    Dane, Sohier
    Tan, Fraser
    Valkonen, Masi
    Corrado, Greg S.
    Peng, Lily
    Mermel, Craig H.
    Ruusuvuori, Pekka
    Litjens, Geert
    Eklund, Martin
    NATURE MEDICINE, 2022, 28 (01) : 154 - +
  • [34] A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score
    Epstein, Jonathan I.
    Zelefsky, Michael J.
    Sjoberg, Daniel D.
    Nelson, Joel B.
    Egevad, Lars
    Magi-Galluzzi, Cristina
    Vickers, Andrew J.
    Parwani, Anil V.
    Reuter, Victor E.
    Fine, Samson W.
    Eastham, James A.
    Wiklund, Peter
    Han, Misop
    Reddy, Chandana A.
    Ciezki, Jay P.
    Nyberg, Tommy
    Klein, Eric A.
    EUROPEAN UROLOGY, 2016, 69 (03) : 428 - 435
  • [35] Prostate cancer grading: Gland segmentation and structural features
    Kien Nguyen
    Sabata, Bikash
    Jain, Anil K.
    PATTERN RECOGNITION LETTERS, 2012, 33 (07) : 951 - 961
  • [36] PCaseek: ultraspecific urinary tumor DNA detection using deep learning for prostate cancer diagnosis and Gleason grading
    Li, Gaojie
    Wang, Ye
    Wang, Ying
    Wang, Baojun
    Liang, Yuan
    Wang, Ping
    He, Yudan
    Hu, Xiaoshan
    Liu, Guojun
    Lei, Zhentao
    Zhang, Bao
    Shi, Yue
    Gao, Xu
    Zhang, Xu
    Ci, Weimin
    CELL DISCOVERY, 2024, 10 (01)
  • [37] Faster and Better: Artificial Intelligence Assisted Gleason Group Grading in Prostate Cancer
    Juhila, Juuso
    Kovala, Marja
    Noora, Neittaanmaki
    Puttonen, Henri
    Manninen, Anniina
    Wester, Anniina
    Blom, Sami
    Karjalainen, Marika
    LABORATORY INVESTIGATION, 2023, 103 (03) : S1295 - S1296
  • [38] Reproducibility of Gleason grading of prostate cancer can be improved by the use of reference images
    Egevad, L
    UROLOGY, 2001, 57 (02) : 291 - 295
  • [39] Re: Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer: The PANDA Challenge
    Bulten, W.
    Karatasalo, K.
    Chen, P. Cameron
    Dasgupta, Prokar
    EUROPEAN UROLOGY, 2022, 82 (05) : 571 - 571
  • [40] Recent trends in Gleason grading of prostate cancer - I. Pattern interpretation
    Egevad, Lars
    ANALYTICAL AND QUANTITATIVE CYTOLOGY AND HISTOLOGY, 2008, 30 (04): : 190 - 198