Bimetric Theory of Fractional Quantum Hall States

被引:80
|
作者
Gromov, Andrey [1 ]
Son, Dam Thanh [1 ]
机构
[1] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW X | 2017年 / 7卷 / 04期
基金
美国国家科学基金会;
关键词
EXCITATIONS; SYMMETRY; ALGEBRA; FLUID;
D O I
10.1103/PhysRevX.7.041032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological Chem-Simons action, coupled to a symmetric rank-2 tensor, and an action a la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k(6) order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH obscrvablcs acquire a curious geometric interpretation within the bimetric formalism.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Bosonic fractional quantum Hall states on the torus from conformal field theory
    Nielsen, Anne E. B.
    Sierra, German
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [22] Fractional quantum Hall states as an Abelian group
    Nassar, Ali
    PHYSICS LETTERS A, 2015, 379 (07) : 643 - 645
  • [23] FRACTIONAL QUANTUM HALL STATES IN NARROW CHANNELS
    YOSHIOKA, D
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (03) : 839 - 842
  • [24] Edge reconstruction in fractional quantum Hall states
    Sabo R.
    Gurman I.
    Rosenblatt A.
    Lafont F.
    Banitt D.
    Park J.
    Heiblum M.
    Gefen Y.
    Umansky V.
    Mahalu D.
    Nature Physics, 1600, Nature Publishing Group (13): : 491 - 496
  • [25] Fractional quantum Hall states of Rydberg polaritons
    Maghrebi, Mohammad F.
    Yao, Norman Y.
    Hafezi, Mohammad
    Pohl, Thomas
    Firstenberg, Ofer
    Gorshkov, Alexey V.
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [26] HIERARCHY OF PLASMAS FOR FRACTIONAL QUANTUM HALL STATES
    MACDONALD, AH
    AERS, GC
    DHARMAWARDANA, MWC
    PHYSICAL REVIEW B, 1985, 31 (08): : 5529 - 5532
  • [27] Bilayer fractional quantum Hall states with dipoles
    Yao, N. Y.
    Bennett, S. D.
    Laumann, C. R.
    Lev, B. L.
    Gorshkov, A. V.
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [28] Edge reconstruction in fractional quantum Hall states
    Sabo, Ron
    Gurman, Itamar
    Rosenblatt, Amir
    Lafont, Fabien
    Banitt, Daniel
    Park, Jinhong
    Heiblum, Moty
    Gefen, Yuval
    Umansky, Vladimir
    Mahalu, Diana
    NATURE PHYSICS, 2017, 13 (05) : 491 - 496
  • [30] FRACTIONAL QUANTUM HALL STATES ON A SQUARE LATTICE
    KLIROS, GS
    DAMBRUMENIL, N
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (23) : 4241 - 4247