Bilayer fractional quantum Hall states with dipoles

被引:8
|
作者
Yao, N. Y. [1 ]
Bennett, S. D. [2 ]
Laumann, C. R. [3 ]
Lev, B. L. [4 ,5 ,6 ]
Gorshkov, A. V. [7 ,8 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[4] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
[7] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[8] Univ Maryland, NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 03期
基金
美国国家科学基金会;
关键词
NUCLEAR-SPIN QUBITS; NON-ABELIAN ANYONS; POLAR-MOLECULES; COUPLED ELECTRON; POINT-DEFECTS; SINGLE SPINS; DIAMOND; LATTICE; ENTANGLEMENT; DYNAMICS;
D O I
10.1103/PhysRevA.92.033609
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using the example of dysprosium atoms in an optical lattice, we show how dipolar interactions between magnetic dipoles can be used to obtain fractional quantum Hall states. In our approach, dysprosium atoms are trapped one atom per site in a deep optical lattice with negligible tunneling. Microwave and spatially dependent optical dressing fields are used to define an effective spin-1/2 or spin-1 degree of freedom in each atom. Thinking of spin-1/2 particles as hard-core bosons, dipole-dipole interactions give rise to boson hopping, topological flat bands with Chern number 1, and the nu = 1/2 Laughlin state. Thinking of spin-1 particles as two-component hard-core bosons, dipole-dipole interactions again give rise to boson hopping, topological flat bands with Chern number 2, and the bilayer Halperin (2,2,1) state. By adjusting the optical fields, we find a phase diagram, in which the (2,2,1) state competes with superfluidity. Generalizations to solid-state magnetic dipoles are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Coherent states in the bilayer fractional quantum Hall ferromagnet
    Nakajima, T
    Aoki, H
    [J]. PHYSICA B-CONDENSED MATTER, 1998, 249 : 828 - 831
  • [2] Dipoles and fractional quantum Hall masses
    Pasquier, V
    [J]. PHYSICAL REVIEW B, 2000, 62 (07): : 4605 - 4609
  • [3] Fractional Quantum Hall States in Bilayer Graphene Probed by Transconductance Fluctuations
    Kim, Youngwook
    Lee, Dong Su
    Jung, Suyong
    Skakalova, Viera
    Taniguchi, T.
    Watanabe, K.
    Kim, Jun Sung
    Smet, Jurgen H.
    [J]. NANO LETTERS, 2015, 15 (11) : 7445 - 7451
  • [4] Valley Isospin Controlled Fractional Quantum Hall States in Bilayer Graphene
    Huang, Ke
    Fu, Hailong
    Hickey, Danielle Reifsnyder
    Alem, Nasim
    Lin, Xi
    Watanabe, Kenji
    Taniguchi, Takashi
    Zhu, Jun
    [J]. PHYSICAL REVIEW X, 2022, 12 (03):
  • [5] Even-denominator fractional quantum Hall states in bilayer graphene
    Li, J. I. A.
    Tan, C.
    Chen, S.
    Zeng, Y.
    Taniguehi, T.
    Watanabe, K.
    Hone, J.
    Dean, C. R.
    [J]. SCIENCE, 2017, 358 (6363) : 648 - 651
  • [6] Fractional quantum Hall states in charge-imbalanced bilayer systems
    Thiebaut, N.
    Regnault, N.
    Goerbig, M. O.
    [J]. 20TH INTERNATIONAL CONFERENCE ON THE APPLICATION OF HIGH MAGNETIC FIELDS IN SEMICONDUCTOR PHYSICS (HMF-20), 2013, 456
  • [7] Principal component analysis for fractional quantum Hall states in bilayer systems
    Jin, Qin
    Wang, Hao
    [J]. PHYSICS LETTERS A, 2022, 427
  • [8] Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
    Barkeshli, Maissam
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW B, 2011, 84 (11):
  • [9] Controllable Driven Phase Transitions in Fractional Quantum Hall States in Bilayer Graphene
    Apalkov, Vadim M.
    Chakraborty, Tapash
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (03)
  • [10] Magnetoconductance Oscillations and Evidence for Fractional Quantum Hall States in Suspended Bilayer and Trilayer Graphene
    Bao, Wenzhong
    Zhao, Zeng
    Zhang, Hang
    Liu, Gang
    Kratz, Philip
    Jing, Lei
    Velasco, Jairo, Jr.
    Smirnov, Dmitry
    Lau, Chun Ning
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (24)