The evidence framework applied to sparse kernel logistic regression

被引:7
|
作者
Cawley, GC [1 ]
Talbot, NLC [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
Bayesian learning; kernel methods; logistic regression;
D O I
10.1016/j.neucom.2004.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based on the evidence framework introduced by MacKay. The principal innovation lies in the re-parameterisation of the model such that the usual spherical Gaussian prior over the parameters in the kernel-induced feature space also corresponds to a spherical Gaussian prior over the transformed parameters, permitting the straight-forward derivation of an efficient update formula for the regularisation parameter. The Bayesian framework also allows the selection of good values for kernel parameters through maximisation of the marginal likelihood, or evidence, for the model. Results obtained on a variety of benchmark data sets are provided indicating that the Bayesian KLR model is competitive with KLR models, where the hyper-parameters are selected via cross-validation and with the support vector machine and relevance vector machine. (c) 2004 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:119 / 135
页数:17
相关论文
共 50 条
  • [1] Doubly Sparse Bayesian Kernel Logistic Regression
    Kojima, Atsushi
    Tanaka, Toshihisa
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 977 - 982
  • [2] A sparse logistic regression framework by difference of convex functions programming
    Liming Yang
    Yannan Qian
    Applied Intelligence, 2016, 45 : 241 - 254
  • [3] A sparse logistic regression framework by difference of convex functions programming
    Yang, Liming
    Qian, Yannan
    APPLIED INTELLIGENCE, 2016, 45 (02) : 241 - 254
  • [4] Sparse kernel logistic regression based on L1/2 regularization
    Xu Chen
    Peng ZhiMing
    Jing WenFeng
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (04) : 1 - 16
  • [5] Sparse kernel logistic regression based on L1/2 regularization
    XU Chen
    PENG ZhiMing
    JING WenFeng
    Science China(Information Sciences), 2013, 56 (04) : 75 - 90
  • [6] Indefinite Kernel Logistic Regression
    Liu, Fanghui
    Huang, Xiaolin
    Yang, Jie
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 846 - 853
  • [7] Robust and sparse logistic regression
    Cornilly, Dries
    Tubex, Lise
    Van Aelst, Stefan
    Verdonck, Tim
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 663 - 679
  • [8] On Regularized Sparse Logistic Regression
    Zhang, Mengyuan
    Liu, Kai
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1535 - 1540
  • [9] Speaker identification and verification using support vector machines and sparse kernel logistic regression
    Katz, Marcel
    Krueger, Sven E.
    Schaffoener, Martin
    Andelic, Edin
    Wendemuth, Andreas
    ADVANCES IN MACHINE VISION, IMAGE PROCESSING, AND PATTERN ANALYSIS, 2006, 4153 : 176 - 184
  • [10] A MULTILEVEL FRAMEWORK FOR SPARSE OPTIMIZATION WITH APPLICATION TO INVERSE COVARIANCE ESTIMATION AND LOGISTIC REGRESSION
    Treister, Eran
    Turek, Javier S.
    Yavneh, Irad
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : S566 - S592