Protonation-Induced Room-Temperature Phosphorescence in Fluorescent Polyurethane

被引:34
|
作者
Sun, Wei [1 ]
Wang, Zhaowu [2 ,3 ]
Wang, Tao [1 ]
Yang, Li [2 ,3 ]
Jiang, Jun [2 ,3 ]
Zhang, Xingyuan [1 ]
Luo, Yi [3 ]
Zhang, Guoqing [2 ]
机构
[1] Univ Sci & Technol China, Dept Polymer Sci & Engn, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2017年 / 121卷 / 22期
基金
国家高技术研究发展计划(863计划);
关键词
AGGREGATION-INDUCED EMISSION; ACHIEVING PERSISTENT; ORGANIC MATERIALS; DESIGN; STRATEGY;
D O I
10.1021/acs.jpca.7b01711
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Room-temperature phosphorescence (RTP) from purely organic systems is of practical importance in biological imaging, oxygen sensing and displaying technologies. The key step to obtaining RTP from organic molecules is efficient intersystem crossing (ISC), which is usually low compared to inorganic materials. Here we show that protonation of a dye molecule, a thioflavin derivative, in strongly polar polyurethane can be used to effectively harness RTP. Prior to protonation, the predominant transition is pi-pi* for the polymer, which has nearly undetectable RTP due to the large singlet triplet energy splitting (0.87 eV).; when Bronsted acids are gradually added to the system, increasingly strong RTP is observed due, to the presence of a new intramolecular charge-transfer (ICT). The ICT state serves to lower the singlet-triplet energy gap (0.46 eV). The smaller gap results in more efficient ISC and thus strong RTP under deoxygenated conditions. The thioflavin-polyurethane system can be tuned via proton concentration and counterions and opens new doors for RTP-based polymeric sensors and stimuli-responsive materials. state
引用
收藏
页码:4225 / 4232
页数:8
相关论文
共 50 条
  • [31] LIFETIME SPECTRA FOR ROOM-TEMPERATURE PHOSPHORESCENCE (RTP)
    MURRAY, KA
    GONZALEZ, E
    CRETELLA, L
    GREGORY, RB
    STREET, KW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1989, 197 : 20 - ANYL
  • [32] ROOM-TEMPERATURE PHOSPHORESCENCE OF SEVERAL POLYAROMATIC HYDROCARBONS
    DINH, TV
    YEN, EL
    WINEFORDNER, JD
    TALANTA, 1977, 24 (02) : 146 - 148
  • [33] Room-temperature phosphorescence from organic aggregates
    Weijun Zhao
    Zikai He
    Ben Zhong Tang
    Nature Reviews Materials, 2020, 5 : 869 - 885
  • [34] Room-temperature phosphorescence from organic aggregates
    Zhao, Weijun
    He, Zikai
    Tang, Ben Zhong
    NATURE REVIEWS MATERIALS, 2020, 5 (12) : 869 - 885
  • [35] A gated strategy stabilizes room-temperature phosphorescence
    Gu, Kaizhi
    Meng, Zhengong
    Liu, Xing Wang
    Wu, Yue
    Qi, Xin
    Ren, Yiran
    Yu, Zhen-Qiang
    Tang, Ben Zhong
    AGGREGATE, 2023, 4 (04):
  • [36] FLUORESCENCE AND PHOSPHORESCENCE QUENCHING OF PROTEINS AT ROOM-TEMPERATURE
    VANDERKOOI, JM
    CALHOUN, DB
    ENGLANDER, SW
    BIOPHYSICAL JOURNAL, 1982, 37 (02) : A248 - A248
  • [37] Supramolecular Purely Organic Room-Temperature Phosphorescence
    Ma, Xin-Kun
    Liu, Yu
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (17) : 3403 - 3414
  • [38] Laser Phosphoroscope and Applications to Room-Temperature Phosphorescence
    Payne, Sarah J.
    Zhang, Guoqing
    Demas, James N.
    Fraser, Cassandra L.
    DeGraff, Ben A.
    APPLIED SPECTROSCOPY, 2011, 65 (11) : 1321 - 1324
  • [39] ROOM-TEMPERATURE PHOSPHORESCENCE OF AROMATICS IN FLUID DIMETHYLMERCURY
    VANDERDONCKT, E
    MATAGNE, M
    SAPIR, M
    CHEMICAL PHYSICS LETTERS, 1973, 20 (01) : 81 - 84
  • [40] SOLID-SURFACE ROOM-TEMPERATURE PHOSPHORESCENCE
    GUNSHEFSKI, M
    SANTANA, JJ
    STEPHENSON, J
    WINEFORDNER, JD
    APPLIED SPECTROSCOPY REVIEWS, 1992, 27 (02) : 143 - 192