Protonation-Induced Room-Temperature Phosphorescence in Fluorescent Polyurethane

被引:34
|
作者
Sun, Wei [1 ]
Wang, Zhaowu [2 ,3 ]
Wang, Tao [1 ]
Yang, Li [2 ,3 ]
Jiang, Jun [2 ,3 ]
Zhang, Xingyuan [1 ]
Luo, Yi [3 ]
Zhang, Guoqing [2 ]
机构
[1] Univ Sci & Technol China, Dept Polymer Sci & Engn, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2017年 / 121卷 / 22期
基金
国家高技术研究发展计划(863计划);
关键词
AGGREGATION-INDUCED EMISSION; ACHIEVING PERSISTENT; ORGANIC MATERIALS; DESIGN; STRATEGY;
D O I
10.1021/acs.jpca.7b01711
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Room-temperature phosphorescence (RTP) from purely organic systems is of practical importance in biological imaging, oxygen sensing and displaying technologies. The key step to obtaining RTP from organic molecules is efficient intersystem crossing (ISC), which is usually low compared to inorganic materials. Here we show that protonation of a dye molecule, a thioflavin derivative, in strongly polar polyurethane can be used to effectively harness RTP. Prior to protonation, the predominant transition is pi-pi* for the polymer, which has nearly undetectable RTP due to the large singlet triplet energy splitting (0.87 eV).; when Bronsted acids are gradually added to the system, increasingly strong RTP is observed due, to the presence of a new intramolecular charge-transfer (ICT). The ICT state serves to lower the singlet-triplet energy gap (0.46 eV). The smaller gap results in more efficient ISC and thus strong RTP under deoxygenated conditions. The thioflavin-polyurethane system can be tuned via proton concentration and counterions and opens new doors for RTP-based polymeric sensors and stimuli-responsive materials. state
引用
收藏
页码:4225 / 4232
页数:8
相关论文
共 50 条
  • [21] THE DEVELOPMENT OF ROOM-TEMPERATURE PHOSPHORESCENCE INTO A NEW TECHNIQUE FOR CHEMICAL DETERMINATIONS .1. PHYSICAL ASPECTS OF ROOM-TEMPERATURE PHOSPHORESCENCE
    PARKER, RT
    FREEDLANDER, RS
    DUNLAP, RB
    ANALYTICA CHIMICA ACTA, 1980, 119 (02) : 189 - 205
  • [22] MATRIX EFFECT ON LIFETIME OF ROOM-TEMPERATURE PHOSPHORESCENCE
    NIDAY, GJ
    SEYBOLD, PG
    ANALYTICAL CHEMISTRY, 1978, 50 (11) : 1577 - 1578
  • [23] REDUCTION OF BACKGROUND EMISSION IN ROOM-TEMPERATURE PHOSPHORESCENCE
    MCALEESE, DL
    DUNLAP, RB
    ANALYTICAL CHEMISTRY, 1984, 56 (03) : 600 - 601
  • [24] AN EVALUATION OF CELLULOSE AS A SUBSTRATE FOR ROOM-TEMPERATURE PHOSPHORESCENCE
    BATEH, RP
    WINEFORDNER, JD
    TALANTA, 1982, 29 (08) : 713 - 717
  • [25] Solid-phase room-temperature phosphorescence
    Hurtubise, RJ
    Thompson, AL
    Hubbard, SE
    ANALYTICAL LETTERS, 2005, 38 (12) : 1823 - 1845
  • [26] SENSITIZERS FOR THE ROOM-TEMPERATURE PHOSPHORESCENCE OF BIACETYL IN FATS
    SARGI, L
    PROGNON, P
    MAHUZIER, G
    CEPEDA, A
    VAZQUEZ, ML
    BLAIS, J
    BISAGNI, E
    ANALYST, 1991, 116 (02) : 159 - 164
  • [27] PHARMACEUTICAL DETERMINATION BY DERIVATIZATION - ROOM-TEMPERATURE PHOSPHORESCENCE
    LONG, WJ
    NORIN, RC
    SU, SY
    ANALYTICAL CHEMISTRY, 1985, 57 (14) : 2873 - 2877
  • [28] Room-temperature phosphorescence (RTP) for optical sensing
    Sanchez-Barragan, I.
    Costa-Fernandez, J. M.
    Valledor, M.
    Campo, J. C.
    Sanz-Medel, A.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2006, 25 (10) : 958 - 967
  • [29] ROOM-TEMPERATURE PHOSPHORESCENCE IN LIQUID-CHROMATOGRAPHY
    PROGNON, P
    CEPEDA, A
    SARGI, L
    BISAGNI, E
    MAHUZIER, G
    ANALUSIS, 1990, 18 (01) : 1 - 8
  • [30] Organic room-temperature phosphorescence materials for bioimaging
    Zhang, Yahui
    Li, Hairong
    Yang, Mengdie
    Dai, Wenbo
    Shi, Jianbing
    Tong, Bin
    Cai, Zhengxu
    Wang, Zhouyu
    Dong, Yuping
    Yu, Xiaoqi
    CHEMICAL COMMUNICATIONS, 2023, 59 (36) : 5329 - 5342