Protonation-Induced Room-Temperature Phosphorescence in Fluorescent Polyurethane

被引:34
|
作者
Sun, Wei [1 ]
Wang, Zhaowu [2 ,3 ]
Wang, Tao [1 ]
Yang, Li [2 ,3 ]
Jiang, Jun [2 ,3 ]
Zhang, Xingyuan [1 ]
Luo, Yi [3 ]
Zhang, Guoqing [2 ]
机构
[1] Univ Sci & Technol China, Dept Polymer Sci & Engn, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2017年 / 121卷 / 22期
基金
国家高技术研究发展计划(863计划);
关键词
AGGREGATION-INDUCED EMISSION; ACHIEVING PERSISTENT; ORGANIC MATERIALS; DESIGN; STRATEGY;
D O I
10.1021/acs.jpca.7b01711
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Room-temperature phosphorescence (RTP) from purely organic systems is of practical importance in biological imaging, oxygen sensing and displaying technologies. The key step to obtaining RTP from organic molecules is efficient intersystem crossing (ISC), which is usually low compared to inorganic materials. Here we show that protonation of a dye molecule, a thioflavin derivative, in strongly polar polyurethane can be used to effectively harness RTP. Prior to protonation, the predominant transition is pi-pi* for the polymer, which has nearly undetectable RTP due to the large singlet triplet energy splitting (0.87 eV).; when Bronsted acids are gradually added to the system, increasingly strong RTP is observed due, to the presence of a new intramolecular charge-transfer (ICT). The ICT state serves to lower the singlet-triplet energy gap (0.46 eV). The smaller gap results in more efficient ISC and thus strong RTP under deoxygenated conditions. The thioflavin-polyurethane system can be tuned via proton concentration and counterions and opens new doors for RTP-based polymeric sensors and stimuli-responsive materials. state
引用
收藏
页码:4225 / 4232
页数:8
相关论文
共 50 条
  • [1] Crystallization-induced room-temperature phosphorescence in fumaramides
    Nitti, Andrea
    Botta, Chiara
    Forni, Alessandra
    Cariati, Elena
    Lucenti, Elena
    Pasini, Dario
    CRYSTENGCOMM, 2020, 22 (45) : 7782 - 7785
  • [2] Room-Temperature Phosphorescence Induced by Heterogeneous Polymer Matrixes
    Qiu, Lu
    Chen, Zijian
    Wu, Jintong
    Zeng, Guangjian
    Liu, Xiang
    Liu, Kunkun
    Su, Shi-jian
    Loos, Joachim
    Wen, Tao
    MACROMOLECULES, 2024, 57 (06) : 2679 - 2686
  • [3] ROOM-TEMPERATURE PHOSPHORESCENCE OF INDICANS
    HAUSTEIN, CH
    GARRELS, RL
    ANALYST, 1990, 115 (02) : 155 - 158
  • [4] Significant room-temperature phosphorescence enhancement induced by matrix complexes
    Bo, Changchang
    Wang, Bowei
    Jia, Qinglong
    Shen, Zhuoyao
    Xu, Wensheng
    Liu, Jiayi
    Chen, Ligong
    Li, Yang
    Gou, Yu
    Yan, Xilong
    CHEMICAL ENGINEERING JOURNAL, 2024, 482
  • [5] Room-Temperature Phosphorescence from Encapsulated Pyrene Induced by Xenon
    Raj, A. Mohan
    Sharma, Gaurav
    Prabhakar, Rajeev
    Ramamurthy, V
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (42): : 9123 - 9131
  • [6] ROOM-TEMPERATURE PHOSPHORESCENCE MARKING OF FLUORESCENT CELLULOSE SURFACES WITH ADSORBED ORGANIC PHOSPHORS
    LLOYD, JBF
    JOURNAL OF THE FORENSIC SCIENCE SOCIETY, 1982, 22 (02): : 161 - 164
  • [7] Brightening room-temperature phosphorescence in solution
    Fei Nie
    Dongpeng Yan
    Science China Chemistry, 2023, 66 : 611 - 612
  • [8] ROOM-TEMPERATURE PHOSPHORESCENCE OPTOSENSOR FOR TETRACYCLINES
    ALAVAMORENO, F
    DIAZGARCIA, ME
    SANZMEDEL, A
    ANALYTICA CHIMICA ACTA, 1993, 281 (03) : 637 - 644
  • [9] ROOM-TEMPERATURE PHOSPHORESCENCE OF IMPURE FLUORENE
    BRUZZONE, L
    BADIA, R
    ANALYTICAL LETTERS, 1990, 23 (06) : 1113 - 1121
  • [10] LIFETIME SPECTRA FOR ROOM-TEMPERATURE PHOSPHORESCENCE
    MURRAY, KA
    GONZALEZ, E
    GREGORY, RB
    STREET, KW
    APPLIED SPECTROSCOPY, 1989, 43 (02) : 351 - 354