NONLINEAR INITIAL VALUE PROBLEMS WITH p-LAPLACIAN

被引:0
|
作者
Kong, Qingkai [1 ]
Wang, Xiaofei [1 ]
机构
[1] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2010年 / 19卷 / 01期
关键词
EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear initial value problem consisting of the equation -[p(t)phi)(y')]'+ q(t)phi(y) = w(t)f(y) with phi(y) = vertical bar y vertical bar(r-1)y for r > 0 and the initial conditions y(t(0)) = y(0), (P(1/r)y')(t(0)) = z(0). By establishing nonlinear integral inequalities and applying a generalized energy function and a generalized Prufer transformation, we prove that the solution of this initial value problem exists on the whole domain and is unique. This paper provides a foundation for a forthcoming paper on the existence of nodal solutioins of second order nonlinear boundary value problems with p-Laplacian.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
  • [1] On initial value problems related to p-Laplacian and pseudo-Laplacian
    Bognár, G
    Rontó, M
    Rajabov, N
    ACTA MATHEMATICA HUNGARICA, 2005, 108 (1-2) : 1 - 12
  • [2] On initial value problems related to p-Laplacian and pseudo-Laplacian
    Gabriella Bognár
    Miklós Rontó
    Nusrat Rajabov
    Acta Mathematica Hungarica, 2005, 108 : 1 - 12
  • [3] Initial value problems for fractional p-Laplacian equations with singularity
    Hasanov, Mahir
    AIMS MATHEMATICS, 2024, 9 (05): : 12800 - 12813
  • [4] NONUNIQUENESS OF SOLUTIONS OF INITIAL-VALUE PROBLEMS FOR PARABOLIC p-LAPLACIAN
    Benedikt, Jiri
    Bobkov, Vladimir E.
    Girg, Petr
    Kotrla, Lukas
    Takac, Peter
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [5] Initial value problems of p-Laplacian with a strong singular indefinite weight
    Li, Hong-Xu
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (3-4): : 415 - 425
  • [6] Nonlinear boundary value problems involving the p-Laplacian and p-Laplacian-like operators
    Papageorgiou, EH
    Papageorgiou, NS
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (04): : 691 - 707
  • [7] Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian
    Ding, Youzheng
    Wei, Zhongli
    Xu, Jiafa
    O'Regan, Donal
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 151 - 158
  • [8] NONLINEAR BOUNDARY VALUE PROBLEMS FOR p-LAPLACIAN FRACTIONAL DIFFERENTIAL SYSTEMS
    Hamal, Nuket Aykut
    Deren, Fulya Yoruk
    Cerdik, Tugba Senlik
    DYNAMIC SYSTEMS AND APPLICATIONS, 2015, 24 (03): : 271 - 282
  • [9] On Nonlinear Boundary Value Problems for Functional Difference Equations with p-Laplacian
    Wan, Yong
    Liu, Yuji
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010
  • [10] Singular boundary value problems for the p-Laplacian
    Hai, D. D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 2876 - 2881