NONUNIQUENESS OF SOLUTIONS OF INITIAL-VALUE PROBLEMS FOR PARABOLIC p-LAPLACIAN

被引:0
|
作者
Benedikt, Jiri [1 ]
Bobkov, Vladimir E. [2 ]
Girg, Petr [1 ]
Kotrla, Lukas [1 ]
Takac, Peter [1 ]
机构
[1] Univ W Bohemia, Fac Appl Scences, Dept Math & NTIS, CZ-30614 Plzen, Czech Republic
[2] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
Quasilinear parabolic equations with p-Laplacian; nonuniqueness for initial-boundary value problem; sub- and supersolutions; comparison principle; PRINCIPLE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a positive solution to a quasilinear parabolic problem in a bounded spatial domain with the p-Laplacian and a nonsmooth reaction function. We obtain nonuniqueness for zero initial data. Our method is based on sub- and supersolutions and the weak comparison principle. Using the method of sub- and supersolutions we construct a positive solution to a quasilinear parabolic problem with the p-Laplacian and a reaction function that is non-Lipschitz on a part of the spatial domain. Thereby we obtain nonuniqueness for zero initial data.
引用
收藏
页数:7
相关论文
共 50 条