NONLINEAR INITIAL VALUE PROBLEMS WITH p-LAPLACIAN

被引:0
|
作者
Kong, Qingkai [1 ]
Wang, Xiaofei [1 ]
机构
[1] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2010年 / 19卷 / 01期
关键词
EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear initial value problem consisting of the equation -[p(t)phi)(y')]'+ q(t)phi(y) = w(t)f(y) with phi(y) = vertical bar y vertical bar(r-1)y for r > 0 and the initial conditions y(t(0)) = y(0), (P(1/r)y')(t(0)) = z(0). By establishing nonlinear integral inequalities and applying a generalized energy function and a generalized Prufer transformation, we prove that the solution of this initial value problem exists on the whole domain and is unique. This paper provides a foundation for a forthcoming paper on the existence of nodal solutioins of second order nonlinear boundary value problems with p-Laplacian.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条