Driven thermal waves and determination of the thermal conductivity in a magnetized plasma

被引:5
|
作者
Karbashewski, S. [1 ]
Sydora, R. D. [1 ]
Van Compernolle, B. [2 ]
Poulos, M. J. [2 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会;
关键词
CLASSICAL HEAT-TRANSPORT; TEMPERATURE FILAMENT; DIFFUSIVITY; CAVITY; FLUCTUATIONS; RESONATOR;
D O I
10.1103/PhysRevE.98.051202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Results are presented from a basic heat transport experiment using a magnetized electron temperature filament that behaves as a thermal resonator. A small, crystal cathode injects low-energy electrons along the magnetic field into the afterglow of a large preexisting plasma forming a hot electron filament embedded in a colder plasma. A series of low amplitude, sinusoidal perturbations are added to the cathode discharge bias that create an oscillating heat source capable of driving thermal waves. Langmuir probe measurements demonstrate driven thermal oscillations and allow for the determination of the amplitude and parallel phase velocity of the thermal waves over a range of driver frequencies. The results conclusively show the presence of a thermal resonance and are used to verify the parallel thermal wave dispersion relation based on classical transport theory. A nonlinear transport code is used to verify the analysis procedure. This technique provides an alternative measure of the density normalized thermal conductivity, independent of the electron temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Calculation of Thermal Conductivity Coefficients of Electrons in Magnetized Dense Matter
    G. S. Bisnovatyi-Kogan
    M. V. Glushikhina
    Plasma Physics Reports, 2018, 44 : 405 - 423
  • [42] EXPERIMENTAL DETERMINATION OF THERMAL CONDUCTIVITY OF SOIL WITH A THERMAL RESPONSE TEST
    Banjac, Milos J.
    Todorovic, Maja N.
    Ristanovic, Milan R.
    Galic, Radoslav D.
    THERMAL SCIENCE, 2012, 16 (04): : 1117 - 1126
  • [43] Anisotropy-driven thermal conductivity switching and thermal hysteresis in a ferroelectric
    Antonio Seijas-Bellido, Juan
    Iniguez, Jorge
    Rurali, Riccardo
    APPLIED PHYSICS LETTERS, 2019, 115 (19)
  • [44] THERMAL-CONDUCTIVITY OF A GASEOUS PLASMA
    MAJUMDAR, SK
    ADHIKARI, D
    LAHIRI, A
    PLASMA PHYSICS AND CONTROLLED FUSION, 1973, 15 (12) : 1259 - 1261
  • [45] Thermal conductivity evaluation of magnetized non-Newtonian nanofluid and dusty particles with thermal radiation
    Hussain, Syed Modassir
    Khan, Umair
    Obalalu, Adebowale Martins
    Zaib, Aurang
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2024, 43 (01)
  • [46] Thermal conductivity of nonlinear waves in disordered chains
    SERGEJ FLACH
    MIKHAIL IVANCHENKO
    NIANBEI LI
    Pramana, 2011, 77 : 1007 - 1014
  • [47] PLASMA THERMAL CONDUCTIVITY WITH COLLECTIVE EFFECTS
    RAND, S
    LEVINSKY, ES
    PHYSICS OF FLUIDS, 1966, 9 (10) : 1991 - &
  • [48] Determination of the thermal conductivity of foam aluminum
    A. N. Abramenko
    A. S. Kalinichenko
    Y. Burtser
    V. A. Kalinichenko
    S. A. Tanaeva
    I. P. Vasilenko
    Journal of Engineering Physics and Thermophysics, 1999, 72 (3) : 369 - 373
  • [49] Noncontact determination of the thermal conductivity of fibres
    Drach, V
    Ebert, HP
    Fricke, J
    HIGH TEMPERATURES-HIGH PRESSURES, 2000, 32 (03) : 337 - 346
  • [50] Determination of the thermal conductivity of composted material
    Waszkielis, K. M.
    Bialobrzewski, I.
    Nowak, K. W.
    Dzadz, L.
    Dach, J.
    MEASUREMENT, 2014, 58 : 441 - 447