Driven thermal waves and determination of the thermal conductivity in a magnetized plasma

被引:5
|
作者
Karbashewski, S. [1 ]
Sydora, R. D. [1 ]
Van Compernolle, B. [2 ]
Poulos, M. J. [2 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会;
关键词
CLASSICAL HEAT-TRANSPORT; TEMPERATURE FILAMENT; DIFFUSIVITY; CAVITY; FLUCTUATIONS; RESONATOR;
D O I
10.1103/PhysRevE.98.051202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Results are presented from a basic heat transport experiment using a magnetized electron temperature filament that behaves as a thermal resonator. A small, crystal cathode injects low-energy electrons along the magnetic field into the afterglow of a large preexisting plasma forming a hot electron filament embedded in a colder plasma. A series of low amplitude, sinusoidal perturbations are added to the cathode discharge bias that create an oscillating heat source capable of driving thermal waves. Langmuir probe measurements demonstrate driven thermal oscillations and allow for the determination of the amplitude and parallel phase velocity of the thermal waves over a range of driver frequencies. The results conclusively show the presence of a thermal resonance and are used to verify the parallel thermal wave dispersion relation based on classical transport theory. A nonlinear transport code is used to verify the analysis procedure. This technique provides an alternative measure of the density normalized thermal conductivity, independent of the electron temperature.
引用
收藏
页数:5
相关论文
共 50 条