Solutions of fractional nonlinear diffusion equation and first passage time: Influence of initial condition and diffusion coefficient

被引:1
|
作者
Wang, Jun [1 ]
Zhang, Wen-Jun [2 ]
Liang, Jin-Rong [3 ]
Zhang, Pan [1 ]
Ren, Fu-Yao [1 ]
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Shenzhen Univ, Coll Math & Comp Sci, Shenzhen 518060, Peoples R China
[3] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional nonlinear diffusion equation; probability distribution; first passage time distribution; mean first passage time; mean squared displacement;
D O I
10.1016/j.physa.2008.04.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the solutions and the first passage time for anomalous diffusion processes governed by the fractional nonlinear diffusion equation with diffusion coefficient separable in time and space, D(t, x) = D(t)vertical bar x vertical bar(-theta), subject to absorbing boundary condition and the conventional initial condition p(x, 0) = delta(x - x(0)). We obtain explicit analytical expressions for the probability distribution, the first passage time distribution, the mean first passage time and the mean squared displacement, and discuss their behavior corresponding to different time dependent diffusion coefficients. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4547 / 4552
页数:6
相关论文
共 50 条
  • [31] Numerical inversions for space-dependent diffusion coefficient in the time fractional diffusion equation
    Li, Gongsheng
    Gu, Wenjuan
    Jia, Xianzheng
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2012, 20 (03): : 339 - 366
  • [32] On the simultaneous reconstruction of the initial diffusion time and source term for the time-fractional diffusion equation
    Ruan, Zhousheng
    Chen, Zhenxing
    Luo, Min
    Zhang, Wen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (11) : 2077 - 2093
  • [33] Numerical Solution of a Subdiffusion Equation with Variable Order Time Fractional Derivative and Nonlinear Diffusion Coefficient
    Lapin, A.
    Yanbarisov, R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) : 2790 - 2803
  • [34] Numerical Solution of a Subdiffusion Equation with Variable Order Time Fractional Derivative and Nonlinear Diffusion Coefficient
    A. Lapin
    R. Yanbarisov
    Lobachevskii Journal of Mathematics, 2023, 44 : 2790 - 2803
  • [35] Recovering a time-dependent potential function in a time fractional diffusion equation by using a nonlinear condition
    Jiang, Suzhen
    Wei, Ting
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (02) : 174 - 195
  • [36] Existence of solutions to a nonlinear fractional diffusion equation with exponential growth
    He, Jia Wei
    Zhou, Yong
    Alsaedi, Ahmed
    Ahmad, Bashir
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (02): : 286 - 304
  • [37] Identification of the Initial Value for a Time-Fractional Diffusion Equation
    Yang, Fan
    Gao, Yin-Xia
    Li, Dun-Gang
    Li, Xiao-Xiao
    SYMMETRY-BASEL, 2022, 14 (12):
  • [38] Recovering the Initial Distribution for a Time-Fractional Diffusion Equation
    Mohammad F. Al-Jamal
    Acta Applicandae Mathematicae, 2017, 149 : 87 - 99
  • [39] Recovering the Initial Distribution for a Time-Fractional Diffusion Equation
    Al-Jamal, Mohammad F.
    ACTA APPLICANDAE MATHEMATICAE, 2017, 149 (01) : 87 - 99
  • [40] Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 53 - 62