Solutions of fractional nonlinear diffusion equation and first passage time: Influence of initial condition and diffusion coefficient

被引:1
|
作者
Wang, Jun [1 ]
Zhang, Wen-Jun [2 ]
Liang, Jin-Rong [3 ]
Zhang, Pan [1 ]
Ren, Fu-Yao [1 ]
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Shenzhen Univ, Coll Math & Comp Sci, Shenzhen 518060, Peoples R China
[3] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional nonlinear diffusion equation; probability distribution; first passage time distribution; mean first passage time; mean squared displacement;
D O I
10.1016/j.physa.2008.04.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the solutions and the first passage time for anomalous diffusion processes governed by the fractional nonlinear diffusion equation with diffusion coefficient separable in time and space, D(t, x) = D(t)vertical bar x vertical bar(-theta), subject to absorbing boundary condition and the conventional initial condition p(x, 0) = delta(x - x(0)). We obtain explicit analytical expressions for the probability distribution, the first passage time distribution, the mean first passage time and the mean squared displacement, and discuss their behavior corresponding to different time dependent diffusion coefficients. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4547 / 4552
页数:6
相关论文
共 50 条
  • [11] Continuity of solutions to a nonlinear fractional diffusion equation
    Lorenzo Brasco
    Erik Lindgren
    Martin Strömqvist
    Journal of Evolution Equations, 2021, 21 : 4319 - 4381
  • [12] Continuity of solutions to a nonlinear fractional diffusion equation
    Brasco, Lorenzo
    Lindgren, Erik
    Stromqvist, Martin
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4319 - 4381
  • [13] On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation
    Muhammad Ali
    Sara Aziz
    Salman A. Malik
    Analysis and Mathematical Physics, 2021, 11
  • [14] On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [15] An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation
    Oulmelk, A.
    Afraites, L.
    Hadri, A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [16] An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation
    A. Oulmelk
    L. Afraites
    A. Hadri
    Computational and Applied Mathematics, 2023, 42
  • [17] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [18] ANALYSIS OF THE TIME FRACTIONAL NONLINEAR DIFFUSION EQUATION FROM DIFFUSION PROCESS
    Liu, Jian-Gen
    Yang, Xiao-Jun
    Feng, Yi-Ying
    Zhang, Hong-Yi
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03): : 1060 - 1072
  • [19] Simultaneous uniqueness identification of the fractional order and diffusion coefficient in a time-fractional diffusion equation
    Jing, Xiaohua
    Jia, Junxiong
    Song, Xueli
    APPLIED MATHEMATICS LETTERS, 2025, 162
  • [20] Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation
    Borikhanov, Meiirkhan. B. B.
    Ruzhansky, Michael
    Torebek, Berikbol. T. T.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (01) : 111 - 146