Solutions of fractional nonlinear diffusion equation and first passage time: Influence of initial condition and diffusion coefficient

被引:1
|
作者
Wang, Jun [1 ]
Zhang, Wen-Jun [2 ]
Liang, Jin-Rong [3 ]
Zhang, Pan [1 ]
Ren, Fu-Yao [1 ]
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Shenzhen Univ, Coll Math & Comp Sci, Shenzhen 518060, Peoples R China
[3] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional nonlinear diffusion equation; probability distribution; first passage time distribution; mean first passage time; mean squared displacement;
D O I
10.1016/j.physa.2008.04.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the solutions and the first passage time for anomalous diffusion processes governed by the fractional nonlinear diffusion equation with diffusion coefficient separable in time and space, D(t, x) = D(t)vertical bar x vertical bar(-theta), subject to absorbing boundary condition and the conventional initial condition p(x, 0) = delta(x - x(0)). We obtain explicit analytical expressions for the probability distribution, the first passage time distribution, the mean first passage time and the mean squared displacement, and discuss their behavior corresponding to different time dependent diffusion coefficients. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4547 / 4552
页数:6
相关论文
共 50 条
  • [1] Fractional nonlinear diffusion equation and first passage time
    Wang, Jun
    Zhang, Wen-Jun
    Liang, Jin-Rong
    Xiao, Han-Bin
    Ren, Fu-Yao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (04) : 764 - 772
  • [2] Anomalous diffusion, solutions, and first passage time: Influence of diffusion coefficient
    Fa, KS
    Lenzi, EK
    PHYSICAL REVIEW E, 2005, 71 (01):
  • [3] Solutions for a fractional nonlinear diffusion equation: Spatial time dependent diffusion coefficient and external forces
    Lenzi, EK
    Mendes, RS
    Fa, KS
    da Silva, LR
    Lucena, LS
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (09) : 3444 - 3452
  • [4] Determination of a Nonlinear Coefficient in a Time-Fractional Diffusion Equation
    Zeki, Mustafa
    Tinaztepe, Ramazan
    Tatar, Salih
    Ulusoy, Suleyman
    Al-Hajj, Rami
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [5] Identification of the diffusion coefficient in a time fractional diffusion equation
    Shayegan, Amir Hossein Salehi
    Zakeri, Ali
    Bodaghi, Soheila
    Heshmati, M.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (02): : 299 - 306
  • [6] Power law diffusion coefficient and anomalous diffusion: Analysis of solutions and first passage time
    Fa, KS
    Lenzi, EK
    PHYSICAL REVIEW E, 2003, 67 (06):
  • [7] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [8] Simultaneous uniqueness for the diffusion coefficient and initial value identification in a time-fractional diffusion equation
    Jing, Xiaohua
    Jia, Junxiong
    Song, Xueli
    APPLIED MATHEMATICS LETTERS, 2024, 156
  • [9] Time-fractional diffusion equation with time dependent diffusion coefficient
    Fa, KS
    Lenzi, EK
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [10] Identifying a diffusion coefficient in a time-fractional diffusion equation
    Wei, T.
    Li, Y. S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 151 : 77 - 95