Role of confinements on the melting of Wigner molecules in quantum dots

被引:4
|
作者
Bhattacharya, Dyuti [1 ]
Filinov, Alexei V. [2 ,3 ]
Ghosal, Amit [1 ]
Bonitz, Michael [2 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Mohanpur Campus, Mohanpur 741246, India
[2] Christian Albrechts Univ Kiel, Inst Theoret Phys & Astrophys, Leibnizstr 15, D-24098 Kiel, Germany
[3] Joint Inst High Temp RAS, Izhorskaya Str 13, Moscow 125412, Russia
来源
EUROPEAN PHYSICAL JOURNAL B | 2016年 / 89卷 / 03期
关键词
PHASE-TRANSITIONS; 2; DIMENSIONS; GROUND-STATE; SYSTEMS; FLUCTUATIONS; ELECTRONS; CRYSTALLIZATION; PARTICLES; BEHAVIOR; HELIUM;
D O I
10.1140/epjb/e2016-60448-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B 86, 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder. Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale n(X). This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids". An intriguing signature of weakening liquidity with increasing temperature, T, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting". Our analyses carry serious implications for a variety of experiments on many-particle systems - semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [32] Incipient quantum melting of the one-dimensional Wigner lattice
    Fratini, S
    Valenzuela, B
    Baeriswyl, D
    SYNTHETIC METALS, 2004, 141 (1-2) : 193 - 196
  • [33] Quantum correlations in one-dimensional Wigner molecules
    Koscik, Przemyslaw
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (11):
  • [34] Quantum correlations in one-dimensional Wigner molecules
    Przemysław Kościk
    The European Physical Journal D, 2017, 71
  • [35] Quantum Memory via Wigner Crystals of Polar Molecules
    Xue Peng
    CHINESE PHYSICS LETTERS, 2011, 28 (12)
  • [36] Wigner oscillations in strongly correlated carbon nanotube quantum dots
    Ziani, N. Traverso
    Dolcetto, G.
    Cavaliere, F.
    Sassetti, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (05):
  • [37] Wigner Localization and Whispering Gallery Modes of Electrons in Quantum Dots
    Mintairov, A. M.
    Merz, J. L.
    Kapaldo, J.
    Vlasov, A. S.
    Blundell, S. A.
    SEMICONDUCTORS, 2018, 52 (04) : 502 - 506
  • [38] Wigner oscillations in strongly correlated carbon nanotube quantum dots
    N. Traverso Ziani
    G. Dolcetto
    F. Cavaliere
    M. Sassetti
    The European Physical Journal Plus, 129
  • [39] Wigner Localization and Whispering Gallery Modes of Electrons in Quantum Dots
    A. M. Mintairov
    J. L. Merz
    J. Kapaldo
    A. S. Vlasov
    S. A. Blundell
    Semiconductors, 2018, 52 : 502 - 506
  • [40] Exact numerical procedure for the binding energy of hydrogen impurities in quantum dots with parabolic confinements
    Abramov, Arnold
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1355 - 1358