Role of confinements on the melting of Wigner molecules in quantum dots

被引:4
|
作者
Bhattacharya, Dyuti [1 ]
Filinov, Alexei V. [2 ,3 ]
Ghosal, Amit [1 ]
Bonitz, Michael [2 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Mohanpur Campus, Mohanpur 741246, India
[2] Christian Albrechts Univ Kiel, Inst Theoret Phys & Astrophys, Leibnizstr 15, D-24098 Kiel, Germany
[3] Joint Inst High Temp RAS, Izhorskaya Str 13, Moscow 125412, Russia
来源
EUROPEAN PHYSICAL JOURNAL B | 2016年 / 89卷 / 03期
关键词
PHASE-TRANSITIONS; 2; DIMENSIONS; GROUND-STATE; SYSTEMS; FLUCTUATIONS; ELECTRONS; CRYSTALLIZATION; PARTICLES; BEHAVIOR; HELIUM;
D O I
10.1140/epjb/e2016-60448-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B 86, 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder. Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale n(X). This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids". An intriguing signature of weakening liquidity with increasing temperature, T, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting". Our analyses carry serious implications for a variety of experiments on many-particle systems - semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Incipient Wigner localization in circular quantum dots
    Ghosal, Amit
    Gueclue, A. D.
    Umrigar, C. J.
    Ullmo, Denis
    Baranger, Harold U.
    PHYSICAL REVIEW B, 2007, 76 (08)
  • [22] Anisotropic quantum dots: Correspondence between quantum and classical Wigner molecules, parity symmetry, and broken-symmetry states
    Szafran, B
    Peeters, FM
    Bednarek, S
    Adamowski, J
    PHYSICAL REVIEW B, 2004, 69 (12)
  • [23] INFLUENCE OF LONGITUDINAL AND LATERAL CONFINEMENTS ON EXCITONS IN CYLINDRICAL QUANTUM DOTS OF SEMICONDUCTORS
    LEGOFF, S
    STEBE, B
    PHYSICAL REVIEW B, 1993, 47 (03): : 1383 - 1391
  • [24] Optical Aharonov-Bohm effect on Wigner molecules in type-II semiconductor quantum dots
    Okuyama, Rin
    Eto, Mikio
    Hyuga, Hiroyuki
    PHYSICAL REVIEW B, 2011, 83 (19)
  • [25] Wigner molecules in polygonal quantum dots:: A density-functional study -: art. no. 035326
    Räsänen, E
    Saarikoski, H
    Puska, MJ
    Nieminen, RM
    PHYSICAL REVIEW B, 2003, 67 (03):
  • [26] The influence of confinements on the photon flux spectra in amorphous silicon quantum dots
    Abdulrida, Moafak Cadim
    Abdul-Ameer, Nidhal Moosa
    Abdul-Hakeem, Shatha Mohammad
    TURKISH JOURNAL OF PHYSICS, 2012, 36 (02): : 197 - 205
  • [27] Quantum melting of a two-dimensional Wigner crystal
    Dolgopolov, V. T.
    PHYSICS-USPEKHI, 2017, 60 (07) : 731 - 742
  • [28] On the quantum melting of the two-dimensional Wigner crystal
    Waintal, X
    PHYSICAL REVIEW B, 2006, 73 (07):
  • [29] Transport properties of quantum dots in the Wigner molecule regime
    Cavaliere, F.
    De Giovannini, U.
    Sassetti, M.
    Kramer, B.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [30] Magnetism and quantum melting in moire-material Wigner crystals
    Morales-Duran, Nicolas
    Potasz, Pawel
    MacDonald, Allan H.
    PHYSICAL REVIEW B, 2023, 107 (23)