Active Memory Cube: A processing-in-memory architecture for exascale systems

被引:128
|
作者
Nair, R. [1 ]
Antao, S. F. [1 ]
Bertolli, C. [1 ]
Bose, P. [1 ]
Brunheroto, J. R. [1 ]
Chen, T. [1 ]
Cher, C. -Y. [1 ]
Costa, C. H. A. [1 ]
Doi, J. [2 ]
Evangelinos, C. [3 ]
Fleischer, B. M. [1 ]
Fox, T. W. [1 ]
Gallo, D. S. [4 ]
Grinberg, L. [5 ]
Gunnels, J. A. [1 ]
Jacob, A. C. [1 ]
Jacob, P. [1 ]
Jacobson, H. M. [1 ]
Karkhanis, T. [1 ]
Kim, C. [1 ]
Moreno, J. H. [1 ]
O'Brien, J. K. [1 ]
Ohmacht, M. [1 ]
Park, Y. [1 ]
Prener, D. A. [1 ]
Rosenburg, B. S. [1 ]
Ryu, K. D. [6 ]
Sallenave, O. [1 ]
Serrano, M. J. [1 ]
Siegl, P. D. M. [7 ]
Sugavanam, K. [1 ]
Sura, Z. [1 ]
机构
[1] IBM Res Div, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] IBM Res Div, Tokyo, Japan
[3] IBM Res Div, Cambridge, MA 02142 USA
[4] IBM Res Brazil, BR-04007900 Sao Paulo, Brazil
[5] IBM Res Div, Thomas J Watson Res Ctr, Cambridge, MA 02142 USA
[6] LG Elect, Software Platform Lab, Seoul, South Korea
[7] Tech Univ Carolo Wilhelmina Braunschweig, Chair Chip Design Embedded Comp C3E, D-38106 Braunschweig, Germany
关键词
Compendex;
D O I
10.1147/JRD.2015.2409732
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Many studies point to the difficulty of scaling existing computer architectures to meet the needs of an exascale system (i.e., capable of executing 1018 floating-point operations per second), consuming no more than 20 MW in power, by around the year 2020. This paper outlines a new architecture, the Active Memory Cube, which reduces the energy of computation significantly by performing computation in the memory module, rather than moving data through large memory hierarchies to the processor core. The architecture leverages a commercially demonstrated 3D memory stack called the Hybrid Memory Cube, placing sophisticated computational elements on the logic layer below its stack of dynamic random-access memory (DRAM) dies. The paper also describes an Active Memory Cube tuned to the requirements of a scientific exascale system. The computational elements have a vector architecture and are capable of performing a comprehensive set of floating-point and integer instructions, predicated operations, and gather-scatter accesses across memory in the Cube. The paper outlines the software infrastructure used to develop applications and to evaluate the architecture, and describes results of experiments on application kernels, along with performance and power projections.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] COPPER: a combinatorial optimization problem solver with processing-in-memory architecture
    Wang, Qiankun
    Li, Xingchen
    Wu, Bingzhe
    Yang, Ke
    Hu, Wei
    Sun, Guangyu
    Yang, Yuchao
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2023, 24 (05) : 731 - 741
  • [22] vPIM: Processing-in-Memory Virtualization
    Teguia, Dufy
    Chen, Jiaxuan
    Bitchebe, Stella
    Balmau, Oana
    Tchana, Alain
    PROCEEDINGS OF THE TWENTY-FIFTH ACM INTERNATIONAL MIDDLEWARE CONFERENCE, MIDDLEWARE 2024, 2024, : 417 - 430
  • [23] Processing-in-Memory with Temporal Encoding
    Sakib, Mohammad Nazmus
    Sreekumar, Rahul
    Zhu, Xinyuan
    Tracy, Tommy, II
    Stan, Mircea R.
    2022 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2022), 2022, : 56 - 61
  • [24] Database Processing-in-Memory: A Vision
    Kepe, Tiago R.
    Almeida, Eduardo C.
    Alves, Marco A. Z.
    Meira, Jorge A.
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT I, 2019, 11706 : 418 - 428
  • [25] The Active Memory Cube
    Nair, Ravi
    Moreno, Jaime
    IEEE MICRO, 2016, 36 (01) : 10 - 11
  • [26] AR-PIM: An Adaptive-Range Processing-in-Memory Architecture
    Chou, Teyuh
    Garcia-Redondo, Fernando
    Whatmough, Paul
    Zhang, Zhengya
    2023 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, ISLPED, 2023,
  • [27] SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems
    Besta, Maciej
    Kanakagiri, Raghavendra
    Kwasniewski, Grzegorz
    Ausavarungnirun, Rachata
    Beranek, Jakub
    Kanellopoulos, Konstantinos
    Janda, Kacper
    Vonarburg-Shmaria, Zur
    Gianinazzi, Lukas
    Stefan, Ioana
    Gomez-Luna, Juan
    Copik, Marcin
    Kapp-Schwoerer, Lukas
    Di Girolamo, Salvatore
    Blach, Nils
    Konieczny, Marek
    Mutlu, Onur
    Hoefler, Torsten
    PROCEEDINGS OF 54TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, MICRO 2021, 2021, : 282 - 297
  • [28] Accelerating Force-directed Graph Layout with Processing-in-Memory Architecture
    Li, Ruihao
    Song, Shuang
    Wu, Qinzhe
    John, Lizy K.
    2020 IEEE 27TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS (HIPC 2020), 2020, : 271 - 282
  • [29] A Study of Data Layout in Multi-channel Processing-In-Memory Architecture
    Jeong, Taeyang
    Choi, Duheon
    Han, Sangwoo
    Chung, Eui-Young
    PROCEEDINGS OF 2018 7TH INTERNATIONAL CONFERENCE ON SOFTWARE AND COMPUTER APPLICATIONS (ICSCA 2018), 2018, : 134 - 138
  • [30] A Generic Processing in Memory Cycle Accurate Simulator under Hybrid Memory Cube Architecture
    Oliveira, Geraldo F.
    Santos, Paulo C.
    Alves, Marco A. Z.
    Carro, Luigi
    INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION (SAMOS 2017), 2017, : 54 - 61