Estimating vehicle-terrain interaction parameters from tracked-robot sensor data

被引:1
|
作者
Espinoza, Albert [1 ]
Dar, Tehmoor [2 ]
Longoria, Raul G. [3 ]
机构
[1] Univ Ana G Mendez Recinto Gurabo, Gurabo, PR 00777 USA
[2] Thales Grp, Acton, MA USA
[3] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 20期
关键词
Tracked vehicles; Track-terrain interaction modeling; deformable terrains; Soil parameter estimation;
D O I
10.1016/j.ifacol.2021.11.244
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With a wider range of robotic vehicle being deployed with either semi- or full autonomous control, the need to provide useful information about the operational terrain remains essential for reliable operation. In particular, small-scale tracked robotic vehicles are especially found to have widely varying behavior when operating on uncertain and highly variable soil properties. It can be helpful to have information about specific vehicle-terrain parameters that influence traction and resistance to mobility. This paper describes an approach for estimating such terrain parameters (i.e., soil cohesion, shearing resistance, and shear modulus) online, particularly for deformable terrain. By combining an Extended Kalman Filter (EKF) and Newton-Raphson techniques, soil parameters can be estimated using onboard sensor data. Preliminary results from field testing on sandy and clay-like soil terrains show the ability to distinguish between these terrains. These results show promise for implementing online and real-time methods that can inform and guide planning and traction control algorithms. Copyright (C) 2021 The Authors.
引用
收藏
页码:644 / 649
页数:6
相关论文
共 50 条
  • [41] Estimating Terrain Slope from ICESat-2 Data in Forest Environments
    Zhu, Xiaoxiao
    Nie, Sheng
    Wang, Cheng
    Xi, Xiaohuan
    Li, Dong
    Li, Guoyuan
    Wang, Pu
    Cao, Di
    Yang, Xuebo
    REMOTE SENSING, 2020, 12 (20) : 1 - 19
  • [42] Learning concepts from sensor data of a mobile robot
    Klingspor, V
    Morik, KJ
    Rieger, AD
    MACHINE LEARNING, 1996, 23 (2-3) : 305 - 332
  • [43] HIGH-RESOLUTION TERRAIN MAP FROM MULTIPLE SENSOR DATA
    KWEON, IS
    KANADE, T
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) : 278 - 292
  • [44] From Robots to Humans: Visualizations for Robot Sensor Data
    Campusano, Miguel
    Fabry, Johan
    2015 IEEE 3RD WORKING CONFERENCE ON SOFTWARE VISUALIZATION (VISSOFT), 2015, : 135 - 139
  • [45] ESTIMATING LIFE PARAMETERS FROM BURN-IN DATA
    FOSTER, JW
    CRADDOCK, WT
    PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 1974, 7 (02): : 206 - 209
  • [46] Estimating Rotor Suspension Parameters from Runout Data
    Damiano, Brian
    TOPICS IN MODAL ANALYSIS & TESTING, VOL 8, 2020, : 373 - 380
  • [47] Estimating genetic association parameters from family data
    Whittemore, AS
    BIOMETRIKA, 2004, 91 (01) : 219 - 225
  • [48] ESTIMATING FAILURE RATE PARAMETERS FROM CONTAMINATED DATA
    CLAROTTI, CA
    KOCH, G
    SPIZZICHINO, F
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 55 - 55
  • [49] Estimating the Parameters of Normal Distribution from Imprecise Data
    Pak, Abbas
    Mahmoudi, Mohammad Reza
    JOURNAL OF TESTING AND EVALUATION, 2019, 47 (01) : 174 - 187
  • [50] ESTIMATING MULTIPLE PHYSICAL PARAMETERS FROM SPEECH DATA
    Kalluri, Shareef Babu
    Vijayakumar, Ashwin
    Vijayasenan, Deepu
    Singh, Rita
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,