Estimating vehicle-terrain interaction parameters from tracked-robot sensor data

被引:1
|
作者
Espinoza, Albert [1 ]
Dar, Tehmoor [2 ]
Longoria, Raul G. [3 ]
机构
[1] Univ Ana G Mendez Recinto Gurabo, Gurabo, PR 00777 USA
[2] Thales Grp, Acton, MA USA
[3] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 20期
关键词
Tracked vehicles; Track-terrain interaction modeling; deformable terrains; Soil parameter estimation;
D O I
10.1016/j.ifacol.2021.11.244
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With a wider range of robotic vehicle being deployed with either semi- or full autonomous control, the need to provide useful information about the operational terrain remains essential for reliable operation. In particular, small-scale tracked robotic vehicles are especially found to have widely varying behavior when operating on uncertain and highly variable soil properties. It can be helpful to have information about specific vehicle-terrain parameters that influence traction and resistance to mobility. This paper describes an approach for estimating such terrain parameters (i.e., soil cohesion, shearing resistance, and shear modulus) online, particularly for deformable terrain. By combining an Extended Kalman Filter (EKF) and Newton-Raphson techniques, soil parameters can be estimated using onboard sensor data. Preliminary results from field testing on sandy and clay-like soil terrains show the ability to distinguish between these terrains. These results show promise for implementing online and real-time methods that can inform and guide planning and traction control algorithms. Copyright (C) 2021 The Authors.
引用
收藏
页码:644 / 649
页数:6
相关论文
共 50 条
  • [31] Terrain Traversability Analysis Using Multi-Sensor Data Correlation by a Mobile Robot
    Bekhti, Mohammed Abdessamad
    Kobayashi, Yuichi
    Matsumura, Kazuki
    2014 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2014, : 615 - 620
  • [32] RSV: Sensor data viewer for human-robot interaction
    Nakamura, Manabu
    Kawashima, Hideyuki
    Satake, Satoru
    Imai, Michita
    PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON HUMAN-COMPUTER INTERACTION, 2007, : 25 - +
  • [33] Estimating hydrogeologic parameters from radar data
    Young, CT
    GPR 2002: NINTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, 2002, 4758 : 601 - 604
  • [34] Estimating performance parameters from incomplete data
    A. K. Shishov
    Measurement Techniques, 2006, 49 : 130 - 132
  • [35] Estimating performance parameters from incomplete data
    Shishov, AK
    MEASUREMENT TECHNIQUES, 2006, 49 (02) : 130 - 132
  • [36] ON ESTIMATING EPIDEMIC PARAMETERS FROM HOUSEHOLD DATA
    OHLSEN, S
    BIOMETRIKA, 1964, 51 (3-4) : 511 - &
  • [37] Probabilistic model for estimating vehicle trajectories using sparse mobile sensor data
    Hao, Peng
    Boriboonsomsin, Kanok
    Wu, Guoyuan
    Barth, Matthew
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 1363 - 1368
  • [38] Estimating route travel time reliability from simultaneously collected link and route vehicle probe data and roadway sensor data
    Eisele, William
    Naik, Bhaven
    Rilett, Laurence
    INTERNATIONAL JOURNAL OF URBAN SCIENCES, 2015, 19 (03) : 286 - 304
  • [39] A method for separation of the terrain and non-terrain from Vehicle-borne Laser Scanning Data
    Wei, Jiangxia
    Zhong, Ruofei
    35TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT (ISRSE35), 2014, 17
  • [40] Modal Activity-Based Stochastic Model for Estimating Vehicle Trajectories from Sparse Mobile Sensor Data
    Hao, Peng
    Boriboonsomsin, Kanok
    Wu, Guoyuan
    Barth, Matthew J.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (03) : 701 - 711