Communication-Efficient Distributed Optimization using an Approximate Newton-type Method

被引:0
|
作者
Shamir, Ohad [1 ]
Srebro, Nathan [2 ,3 ]
Zhang, Tong [4 ,5 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, Rehovot, Israel
[2] Toyota Technol Inst Chicago, Chicago, IL USA
[3] Technion, Dept Comp Sci, Haifa, Israel
[4] Rutgers State Univ, Dept Stat, Piscataway, NJ USA
[5] Baidu Inc, Beijing, Peoples R China
基金
以色列科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel Newton-type method for distributed optimization, which is particularly well suited for stochastic optimization and learning problems. For quadratic objectives, the method enjoys a linear rate of convergence which provably improves with the data size, requiring an essentially constant number of iterations under reasonable assumptions. We provide theoretical and empirical evidence of the advantages of our method compared to other approaches, such as one-shot parameter averaging and ADMM.
引用
收藏
页码:1000 / 1008
页数:9
相关论文
共 50 条
  • [41] Communication-Efficient Distributed Eigenspace Estimation
    Charisopoulos, Vasileios
    Benson, Austin R.
    Damle, Anil
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (04): : 1067 - 1092
  • [42] Communication-Efficient Distributed Optimization in Networks with Gradient Tracking and Variance Reduction
    Li, Boyue
    Cen, Shicong
    Chen, Yuxin
    Chi, Yuejie
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1464 - 1473
  • [43] Communication-Efficient Regret-Optimal Distributed Online Convex Optimization
    Liu, Jiandong
    Zhang, Lan
    He, Fengxiang
    Zhang, Chi
    Jiang, Shanyang
    Li, Xiang-Yang
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (11) : 2270 - 2283
  • [44] Communication-efficient distributed optimization in networks with gradient tracking and variance reduction
    Li, Boyue
    Cen, Shicong
    Chen, Yuxin
    Chi, Yuejie
    [J]. Journal of Machine Learning Research, 2020, 21
  • [45] Communication-efficient distributed oblivious transfer
    Beimel, Amos
    Chee, Yeow Meng
    Wang, Huaxiong
    Zhang, Liang Feng
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (04) : 1142 - 1157
  • [46] Communication-Efficient Distributed Skyline Computation
    Zhang, Haoyu
    Zhang, Qin
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 437 - 446
  • [47] Communication-Efficient Distributed Learning: An Overview
    Cao, Xuanyu
    Basar, Tamer
    Diggavi, Suhas
    Eldar, Yonina C.
    Letaief, Khaled B.
    Poor, H. Vincent
    Zhang, Junshan
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 851 - 873
  • [48] Communication-efficient Distributed SGD with Sketching
    Ivkin, Nikita
    Rothchild, Daniel
    Ullah, Enayat
    Braverman, Vladimir
    Stoica, Ion
    Arora, Raman
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [49] Communication-Efficient Distributed Statistical Inference
    Jordan, Michael I.
    Lee, Jason D.
    Yang, Yun
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) : 668 - 681
  • [50] FedDANE: A Federated Newton-Type Method
    Li, Tian
    Sahu, Anit Kumar
    Zaheer, Manzil
    Sanjabi, Maziar
    Talwalkar, Ameet
    Smith, Virginia
    [J]. CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1227 - 1231